• Title/Summary/Keyword: Metal post

Search Result 518, Processing Time 0.03 seconds

Performance Improvement by Controlling Se/metal Ratio and Na2S Post Deposition Treatment in Cu(In,Ga)3Se5 Thin-Film Solar cell

  • Cui, Hui-Ling;Kim, Seung Tae;Chalapathy, R.B.V.;Kim, Ji Hye;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • Cu(In,Ga)3Se5 (β-CIGS) has a band gap of 1.35 eV, which is an optimum value for high solar-energy conversion efficiency. The effects of Cu and Ga content on the cell performance were investigated previously. However, the effect of Se content on the cell performance is not well understood yet. In this work, β-CIGS films were fabricated by three-stage co-evaporation of elemental sources with various Se fluxes at the third stage instead of at all stages. The average composition of five samples was Cu1.05(In0.59,Ga0.41)3Sey, where the stoichiometric y value is 5.03 and the stoichiometric Se/metal (Se/M) ratio is 1.24. We varied the Se/metal ratio in a range from 1.18 to 1.28. We found that the best efficiency was achieved when the Se/M ratio was 1.24, which is exactly the stoichiometric value where the CIGS grains on the CIGS surface were tightly connected and faceted. With the optimum Se/M ratio, we were able to enhance the cell efficiency of a β-CIGS solar cell from 9.6% to 12.0% by employing a Na2S post deposition treatment. Our results indicate that Na2S post deposition treatment is very effective to enhance the cell efficiency to a level on par with that in α-CIGS cell.

Post Annealing Effects on the Electrical Properties of Polysilicon Metal-Semiconductor-Metal Photodetectors (폴리 실리콘을 이용한 금속-반도체-금속 광 검출기의 열처리에 따른 전기적 특성)

  • Kim, Kyeong-Min;Kim, Jung-Yeul;Lee, You-Kee;Choi, Yong-Sun;Lee, Jae-Sung;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.195-200
    • /
    • 2018
  • This study investigated the effects of the post annealing temperatures on the electrical and interfacial properties of a metal-semiconductor-metal photodetector(MSM-PD) device. The interdigitate type MSM-PD devices had the structure Al(500 nm) / Ti(200 nm) / poly-Si(500 nm). Structural analyses of the MSM-PD devices were performed by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). Electrical characteristics of the MSM-PD were also examined using current-voltage(I-V) measurements. The optimal post annealing condition for the Schottky contact of MSM-PD devices are $350^{\circ}C$-30minutes. However, as the annealing temperature and time are increased, electrical characteristics of MSM-PD device are degraded. Especially, for the annealing conditions of $400^{\circ}C$-180minutes and $500^{\circ}C$-30minutes, the I-V measurement itself was impossible. These results are closely related to the solid phase reactions at the interface of MSM-PD device, which result in the formation of intermetallic compounds such as $Al_3Ti$ and $Ti_7Al_5Si_{12}$.

Thermal residual stress behavior in fiber metal laminates (섬유금속적층판의 경화 시 발생하는 열 잔류응력에 관한 연구)

  • Kim, Se-Young;Choi, Won-Jong;Park, Sang-Yoon;Moon, Cho-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.39-44
    • /
    • 2005
  • Due to mismatch of thermal expansion coefficients between aluminum sheet and glass/epoxy sheet, thermal residual stresses generally appear in the FML. These stresses will affect the yield and fatigue strength of the FML. The numerically determined residual stresses in the Fiber-Metal-Laminates(FML) have been compared to the residual stresses measured from the curvature and tensile test methods. These two experimental methods have been developed for assessing the influence of residual stress in FML. Post-stretching process has been applied to remove the thermal residual stress and reverse the stress distribution. After post-stretching process, the residual stress has been measured from experiments. The results obtained show that analytical and experimental data are well agreed. The thermal residual stress can be removed by post-stretching process and it will increase the yield strength of FML.

Influence of tooth position within the field of view on the intensity of cone-beam computed tomographic imaging artifacts when assessing teeth restored with various intracanal materials

  • de Oliveira Pinto, Martina Gerlane;Melo, Saulo Leonardo Sousa;Cavalcanti, Yuri Wanderley;de Lima, Elisa Diniz;Bento, Patricia Meira;de Melo, Daniela Pita
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.141-151
    • /
    • 2020
  • Purpose: This study aimed to quantify the influence of tooth position within the field-of-view (FOV) on cone-beam computed tomography (CBCT) imaging artifacts' intensity when assessing teeth restored with various intracanal materials. Materials and Methods: Seventy single-rooted teeth were divided into 7 groups (10 teeth per group): NiCr post (NC), AgPd post (AP), metal core fiberglass post (MCFG), fiberglass post (FG), anatomical fiberglass post (AFG), fiberglass post cemented with core build-up cement (FGCo), and anatomical fiberglass post cemented with core build-up cement (AFGCo). All posts were cemented using a regular dual-curing resin cement (Allcem), except FGCo and AFGCo which were cemented with a core build-up dual-curing resin cement (AllcemCore). Each tooth was scanned on a CS9000 in 5 positions within the FOV: a central position, anterior horizontal peripheral, peripheral superior, peripheral inferior, and posterior horizontal peripheral position. Hyperdense, hypodense, remaining teeth areas and ROI areas were quantitatively analyzed using ImageJ software. Results: Posterior horizontal peripheral position increased the intensity of artifacts on FGCo and AFGCo post groups (P<0.05), and specifically the hypodense artifact intensity on FG and AFG post groups (P<0.05). NC and AP groups presented greater intensity of artifacts than any other post groups(P<0.05). Conclusion: Artifact intensity increases in the presence of high atomic number materials and when the object is not centered within the FOV. The impact of positioning within the FOV on artifact was greater for fiberglass posts cemented with core build-up dual-curing cement than for metal posts and fiberglass posts cemented with regular dual-curing cement.

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Enhanced Carbon Dioxide Adsorption on Post-Synthetically Modified Metal-Organic Frameworks

  • Ko, Na-Keun;Kim, Ja-Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2705-2710
    • /
    • 2011
  • Four MOFs functionalized with 1-Me, 1-Pr, 1-Ph, and 1-$PhCF_3$ were prepared through post-synthetic modifications of a metal-organic framework (MOF), UMCM-1-$NH_2$ (1) with acetic, butyric, benzoic, and 4-(trifluoromethyl)benzoic anhydrides, respectively. Methane adsorption measurements between 253 and 298 K at pressures up to 1 bar indicated that both 1-Ph and 1-$PhCF_3$ adsorbed more $CH_4$ than the parent MOF, 1. All the functionalized MOFs adsorbed more $CO_2$ than 1 under conditions similar to the $CH_4$ test. The introduction of functional groups promoted adsorption of both $CH_4$ and $CO_2$ despite significantly reducing Brunauer-Emmet-Teller (BET) surface area: 4170 (1), 3550 (1-Me), 2900 (1-Pr), 3680 (1-Ph), and 3520 $m^2/g$ (1-$PhCF_3$). Electron-withdrawing aromatic groups (1-Ph, 1-$PhCF_3$) more effectively enhanced $CO_2$ adsorption than electron-donating alkyl groups (1-Me, 1-Pr). In particular, 1-Ph adsorbed 23% more $CO_2$ at 298 K and 50% more at 253 K than 1.

An Electrochemical Evaluation on the Corrosion Resistance of Welding Zone due to Kinds of Repair Welding Filler Metals and Post Weld Heat Treatment (보수용접봉의 종류와 용접후 열처리가 용접금속부의 내식성에 미치는 영향에 관한 전기화학적 평가)

  • Shin, Jae-Hyun;Moon, Kyung-Man
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.310-316
    • /
    • 2010
  • Recently a fuel oil of the diesel engine of the marine ship is being changed with heavy oil of low quality as the oil price is higher more and more. Therefore the wear and corrosion in all parts of the engine such as cylinder liner, piston crown, spindle and seat ring of exhaust valves are predominantly increased. In particular the degree of wear and corrosion of piston crown is more seriously compared to the other parts of the engine due to operating in severe environment such as the high temperature of exhaust gas and repeating impact. Thus the repair weldment of the piston crown is a unique method to prolong the its life in a economical point of view. In this case, filler metals having a high corrosion and wear resistance such as stellite 6, Inconel 625 and Inconel 718 are mainly being used for repair welding. However it has been often happened that piston crown on the ship,s job site is being actually inevitably welded with mild filler metals. Therefore in this study, filler metals such as E4301, E4313 and E4316 were welded at SS401 steel as the base metal, and corrosion property of their weld metals in the case of post weld heat treatment or not was investigated with some electrochemical methods such as measurement of corrosion potential, cathodic and anodic polarization curves, cyclic voltammogram and polarization resistance etc. in 0.1% $H_2SO_4$ solution. Corrosion resistance of the weld metal of E4301 was better than the other weld metals in the case of no heat treatment, however, its resistance was considerably decreased with post weld heat treatment(annealing:$625^{\circ}C$, 2 hr) compared to other weld metals. The weld metals of E4313 and E4316 showed a relatively good corrosion resistance by post weld heat treatment.

Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals - (스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

Complex Formation of Transition and Post-Transition Metal Ions with 1,15-Diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacyclooctadecane (전이 및 중금속이온과 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxa-cyclooctadecane과의 착물형성)

  • Kim, Si-Joong;Lee, Myung-Jae;Koo, Chang-Hyung;Woo, Kyoun-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.645-652
    • /
    • 1991
  • The stability constants$(K_f)$ of the complexes of some transition and post-transition metal ions (Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Zn(Ⅱ), Cd(Ⅱ), Pb(Ⅱ), Hg(Ⅱ)) with $N_2O_3$-donor macrocyclic ligand, 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacyclooctadecane ($NtnOdienH_4$), have been determined by potentiometry in aqueous solution at $25^{\circ}C$. Log $K_f$ values of the complexes were : Co(Ⅱ): 3.83, Ni(Ⅱ) : 4.56, Cu(Ⅱ) : 7.74, Zn(Ⅱ) : 4.98, Cd(Ⅱ) : 3.91, Pb(Ⅱ) : 6.65, and Hg(Ⅱ) : 14.87. The order of stabilities of transition metal complexes was the same as the natural order of stability proposed by Williams-Irving. In post-transition metal complexes, the order of stabilities was Cd(Ⅱ) < Pb(Ⅱ) < Hg(Ⅱ), and the covalent character in metal ion-donor atoms bonds appeared a dominant factor in the stability. In methanol solution, each metal ion forms 1 : 1 complex, while Ni(Ⅱ) ion forms both 1 : 1 and 1 : 2 complexes. It was confirmed by $^1H-$ and $^{13}C-$NMR spectral study that the nitrogen atoms in the ligand were major contributors for the complexation of post-transition metal ions with the ligand. It was shown, by elementry analysis, electrical conductivity and magnetic susceptibility measurements, and spectral analysis, that solid Cu(Ⅱ)-and Zn(Ⅱ)-complexes have a distorted octahedral and a tetrahedral structure, respectively.

  • PDF

A study on the defects of molds for distribution polymer line post insulators and problem-solving measures (배전용 폴리머 라인 포스트 애자 금형의 불량과 대책에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.12-16
    • /
    • 2012
  • In this study, an injection mold is made to produce polymer line post insulators. FRP (fiber reinforced plastics) is covered by silicone housing. In injection molding process, chances for offcenter are 60 percent. Given the structure of the product, offcenter occurs owing to the imbalances in positions of gates and improper -designs of cores and jigs. This study focuses on mold modifications and improvements.

  • PDF