• Title/Summary/Keyword: Metal point

Search Result 1,071, Processing Time 0.026 seconds

A Study on the Distribution of Heavy Metal Concentrations in Marine Surface Sediments around Samcheonpo Power Plant (삼천포화력발전소 주변해역 표층퇴적물중의 중금속원소함량 분포 연구)

  • Lee, Doo-Ho;Lim, Ju-Hwan;Jeon, Byeong-Yeol;Jeong, Nyeon-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • An environmental geochemical survey of heavy metal distribution in marine surface sediments around the ocean of Samcheonpo coal-fired power plant was conducted to investigate the possibility of coal-ash leakage from ash pond and the associated heavy metal pollution in sedimental deposits due to the operation of the coal-fired power plant. The X-Ray Diffractometry (XRD) analysis showed that the main leakage point of coal-ash was limited to a single site of the first ash pond. It also appeared that the amounts of organic carbon and metal elements were positively correlated to the grain size distribution, and that Co, Cr, Cu, Fe, Ni, and Zn were bounded to organic ligands. However, the distributions of Cd, Hg, and Mn did not have any significant correlation with the sediment grain size and organic matters. In particular, the distribution of Cd appeared to be affected by the concentration of the carbonate materials in the study area.

  • PDF

Study of metal dopants and/or Ag nanoparticles incorporated direct-patternable ZnO film by photochemical solution deposition

  • Kim, Hyun-Cheol;Reddy, A.Sivasankar;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.368-368
    • /
    • 2007
  • Zinc oxide (ZnO) has drawn much interest as a potential transparent conducting oxide (TCO) for applying to solar cell and front electrode of electro-luminescent devices. For the enhancement of electrical property of TCOs, dopant introduction and hybridization with conductive nanoparticles have been investigated. In this work, ZnO films were formed on glass substrate by using photochemical solution deposition of Ag nanoparticles dispersed or various metal (Ag, Cd, In, or Sn) contained photosensitive ZnO solutions. The usage of photosensitive solution permits us to obtain a micron-sized direct patterning of ZnO film without using conventional dry etching procedure. The structural, optical, and electrical characteristics of ZnO films with the introduction of metal dopants with/without Ag nanoparticles have been investigated to check whether there is a combined effect between metal dopants and Ag nanoparticles on the characteristics of ZnO film. The phase formation and crystallinity of ZnO film were monitored with X-ray diffractometer. The optical transmittance measurement was carried out using UV-VIS-NIR spectrometer and the electrical properties such as sheet resistance and conductivity were observed by using four-point probe.

  • PDF

Performance Determination of Novel Design Eddy Current Separator for Recycling of Non-Ferrous Metal Particles

  • Fenercioglu, Ahmet;Barutcu, Hamit
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.635-643
    • /
    • 2016
  • Improvements were made in the study for the design of the conventional Eddy Current Separator (ECS) used for separating small sized non-ferrous particles in the waste. These improvements include decreasing the air gap between the material and magnetic drum, making the drum position adjustable and placing the splitter closer to the drum. Thus, small particles were separated with high efficiency. The magnetic drum was removed from inside the ECS conveyor belt system as design change and was placed as a separate unit. Hence, the force generated on the test material increased by about 5.5 times while the air gap between the non-ferrous materials and drum decreased from 3 mm to 1 mm. The non-metal material in the waste is separated before the drum in the novel design. Whereas non-ferrous metal particles are separated by falling into the splitter as a result of the force generated as soon as the particles fall on the drum. Every material that passes through the drum can be recycled as a result of moving the splitter closer to the contact point of the drum. In addition, the drum can also be used for the efficient separation of large particles since its position can be adjusted according to the size of the waste material. The performance of the novel design ECS was verified via analytical approaches, finite element analysis (FEA) and experimental studies.

A Study on Carrier Injection and Trapping by the High Field for MOS(Metal-$Al_2O_3$-p Si$) Structure (Metal-$Al_2O_3$-p Si$의 MOS 구조에 있어서 고전계에의한 Carrier주입과 트랩에 관한 연구)

  • Park, Sung Hee;Sung, Man Young
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.102-109
    • /
    • 1987
  • This study is carrier out to investigate the carrier injection and the characteristics of trapping for the CVD deposited Al2O3 film on Si substrates. Samples used are metal -Al2O3-Si Structure in which metal field plates are used with Aluminium or God. Canier injection and trapping, which result in flat band voltalge shift, occur at fields as low as 1~2 MV/cm. An approximate method is proposed for computing the location of the centroid of the trapped electrons in this paper. Results show that carriers are trapped near the injecting interface at fields less than about 5MV/cm. Because of continued charging, a steady state can not be reached. Therefore the unique I-V curve is obtained when the traps are initially empty. By utilization of applied voltage on each point of the fresh device sample, it is measured the I-V surves for two polarities of applied voltage. The current densities observed in the Al2O3 films are much larger than those obtained in SiO2.

  • PDF

Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate (자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가)

  • Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • The fiber metal laminate is a type of hybrid materials laminated thin metallic sheets with fiber reinforced plastic sheets. The laminate has been researched or applied in automotive and aerospace industries due to their outstanding impact absorbing performance in view of light weight aspect. Specially, the replacement of side-impact beam as the fiber reinforced plastic has been researched actively. The objective of this paper is the primitive investigation in the development of side-door impact beam using the fiber metal laminate. First, the three-point bending simulations were conducted to decide the shape of impact beam using the numerical analysis. Next, two cases impact beam (pure DP 980 and fiber metal laminate) were installed in the side-door, and then the bending tests (according to FMVSS 214S) were simulated using the numerical analysis. It is noted that the side-door impact beam can be replaced with the fiber metal laminate sufficiently based on the numerical analysis results.

Sediment Characteristics in Parking Lot Ditch (주차장지역의 강우유출수로부터 발생된 퇴적물 특성)

  • Lee, Soyoung;Lee, Eun-Ju;Son, Hyungun;Kim, Chulmin;Maniquiz, M.C.;Son, Youngkyu;Khim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • A ditch is a facility for managing washed-off runoff from parking lot area. Washed-off runoff inflows into ditches where it is retained for a short period of time. At this point, it is assumed that a ditch is a preliminary unit for runoff treatment. This research carries out the distribution of particle size and chemical compound for sediment in parking lot ditch. This work is important to understand the amount of generated sediment from this area to be able to determine different particle size ranges for treatment. Metal concentrations for sediment according to particle size are analyzed. From the distribution of particle size, the weight ratio with the range of $425-850{\mu}m$ is the highest. Considering its weight ratio, the metal concentration of coarser particles is high, otherwise metal concentration increases as particle size decreases. Metal load of the range is higher and the ratio of total metal load in the case of Cu, Pb, Zn is nearly 30%. Moreover metal concentration associated with particle size depends on particle ratio. To manage non-point source pollution for parking lot area, these results can be used with this ditch unit.

  • PDF

Discharge Characteristics of Heavy Metals in Acid mine Drainage from the Abandoned Ilgwang Mine (일광 폐광산 갱내에서 유래된 산성광산배수의 중금속 유출특성)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Yu, Hun-Sun;Kim, Sun-Ok
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2010
  • Field water qualities (temperature, pH, Eh, EC, DO) was monitored by 6 times March to September 2009 on background water (BW) and acid mine drainage (AMD0, AMD1, AMD2 and AMD3 points), and flow rate was measured on AMD0 point. Acid mine drainage flowed out from abandoned Ilgwang mine were high acid waters that lower than pH 3, and Eh component was ranged 400 to 600 mV. EC measured on acid mine drainage were higher over 10 times than background water, DO component was increased by reaction on the air during the water flow from AMD0 point to AMD4 point. Heavy metal concentrations in acid mine drainage were ordered Fe > Cu > Zn > Mn > As > Cd, and Fe concentration was highest for 81.870~474.30 mg/L. Monitoring periods measured maximum concentrations of heavy metals were May for As and Cd, June for Fe, July for Cu, Zn and Mn. The periods measured minimum concentrations were monitored April for Cd and Mn, September for Fe, Cu, Zn and As. Discharge mass of heavy metal components were calculated 53.44 kg for Fe, 6.25 kg for Cu, 5.26 kg for Zn, 2.13 kg for Mn, 0.14 kg for As and 0.04 kg for Cd, respectively. Total discharge mass of heavy metal components were calculated 67.26 kg for 1 day, and Fe component was taken 79% of total mass.

The effect of oxidation heat treatment on porcelain to metal bond strength (도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과)

  • Kim, C.Y.;Nam, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.43-46
    • /
    • 1997
  • The interfacial bond strength and microstructural analysis of pre-heat treated porcelain-fused-metal (PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows; A: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F\rightarrow1600^{\circ}F$ holding 1min, reheating $\rightarrow1850^{\circ}F$ under vacuum condition, C: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 1min in the air. The three-point bending test results shows that the interfacial bond strength of specimen B and C were higher than that of A and B. The SEM study reveals that Specimen C shows the highest surface density.

  • PDF

The Coating Materials of Electrode Materials on Machinability of W-EDM (와이어전극의 도금재료가 W-EDM 가공성에 미치는 영향)

  • 김창호;허관도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.735-738
    • /
    • 2000
  • The characteristics of wire electrical discharge machining (WEDM) are governed by many factors such as the power supply type, operating condition and electrode material. This work deals with the effect of wire electrode materials on the machining characteristics such as, metal removal rate, surface characteristics and surface roughness during WEDM A wire's thermal physical properties are melting point, electrical conductivity and vapor pressure. One of the desired qualities of wire is a low melting point and high vapor pressure to help expel the contaminants from the gap. They are determined by the mix of alloying elements (in the case of plain brass and coated wire) or the base core material(i.e. molybdenum). Experiments have been conducted regarding the choice of suitable wire electrode materials and influence of the properties of these materials on the machinability and surface characteristics in WEDM, the experimental results are presented and discussed from their metallurgical aspect. And the coating effect of various alloying elements(Au, Ag, Cu, Zn, Cr, Mn, etc.) to the Cu or 65-35 brass core on them was reviewed also. The removal rate of some coated wires are higher than that of 65-35 brass electrode wire because the wire is difficult to break due to the wire cooling effect of Zn evaporation latent heat and the Zn oxide on the surface is effective in preventing short circuit. The removal rate increases with increasing Zn content from 35, 40 and Zn coated wire

  • PDF

The Meshfree Method Based on the Least-Squares Formulation for Elasto-Plasticity (탄소성 최소 제곱 수식화와 이를 이용한 무요소법)

  • Youn Sung-Kie;Kwon Kie-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.860-875
    • /
    • 2005
  • A new meshfree method for the analysis of elasto-plastic deformations is presented. The method is based on the proposed first-order least-squares formulation, to which the moving least-squares approximation is applied. The least-squares formulation for the classical elasto-plasticity and its extension to an incrementally objective formulation for finite deformations are proposed. In the formulation, the equilibrium equation and flow rule are enforced in least-squares sense, while the hardening law and loading/unloading condition are enforced exactly at each integration point. The closest point projection method for the integration of rate-form constitutive equation is inherently involved in the formulation, and thus the radial-return mapping algorithm is not performed explicitly. Also the penalty schemes for the enforcement of the boundary and frictional contact conditions are devised. The main benefit of the proposed method is that any structure of cells is not used during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are presented.