• Title/Summary/Keyword: Metal point

Search Result 1,071, Processing Time 0.027 seconds

The Study of Alumina Ceramic to Metal Bonding (알루미나 소결체와 금속간의 접합에 관한 연구)

  • 김종희;김형준
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 1978
  • The basic mechanism of adherence in sintered high purity alumina ceramic-to-metal bonding was studied. Emphasis was placed on flux composition, porosity of the fired ceramics, and metallizing mixtures. The study was conducted on 95 and 99.5% alumina, using molydbenum-manganese, molybdenum-manganese-silicon dioxide metallizing compositions. Metallizing was performed in wet hydrogen (dew point, +17$^{\circ}C$) at 145$0^{\circ}C$ for 45min. This experiment indicated that adhernece mechanism of ultra high purity alumina ceramic was attributed to formation of $MnAl_2O_$4, and in the case of 95% alumina containing glass, the migration of glass from the interface into the void of the metal coating was the main role to the adhrence. It showed also that greater the bond-strength was resulted as porosity was increased.

  • PDF

Temperature and Atmosphere Dependence of the Electrical Conduction of the Vacuum Evaporated Thin Metal Films on Glass Substrate (진공증착된 금속박막의 전기전도성에 대한 온도와 분위기 의존성)

  • 김명균;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.437-442
    • /
    • 1991
  • Temperature and atmosphere dependence of electrical conduction of the metal Cu, Ag, Au films, vaccum evaporated on glass, was investigated. The structural changes of the metal films were examined by SEM and high temperature XRD. The electrical resistance slightly increased with initial temperature increase up to the inflection point and decreased to minimum value, after this rapidly increased with further temperature increased below minimum. These phenomena were caused by the thermally induced film failure as a result of the mass transport. The temperature for the film failure increased in the order of O2, Air, Vacuum, N2, Ar in Cu, Ag films and Air, Vacuum, N2, Ar in Au film. The increase of resistance at the lower temperature range was attributed to the lattice distortion by disordered crystal structure, while the decreasing resistance was attributed to the removal of structural defects and film densification.

  • PDF

FPGA based POS MPPT control for a small scale charging system of PV-nickel metal hydride battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Geun;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1306-1307
    • /
    • 2011
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

  • PDF

A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine (다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성)

  • 김건희;고준빈;김홍배;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

Emission Characteristics of NO2 in Diesel Oxidation Catalyst according to the Content of Precious Metal (귀금속 함량에 따른 디젤산화촉매의 이산화질소 배출 특성)

  • Kim, Hoonmyung;Park, Yongsung;Lee, Gwang G.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.37-38
    • /
    • 2012
  • Two catalyst systems with different content of precious metal coated on DOC are carefully tested in a diesel engine to investigate the emission characteristics of $NO_2$. Three types of experiment methods ($NO_2$ conversion test, ETC mode test, and BPT test) are applied to compare the performance of the two catalyst systems. All the experimental results consistently indicate that it is possible to satisfy $NO_x$ regulation by properly lowering the content of precious metal without the loss of PM removal performance.

  • PDF

A Study of Aluminum reflector manufacturing in diamond turning machine (초정밀가공기를 이용한 알루미늄반사경의 절삭특성)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1125-1128
    • /
    • 2001
  • A 110mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning(SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

Investigation of cure cycle for co-cured metal/composite hybrid structures without fabricating thermal residual stress (동시경화 하이브리드 금속/복합재료 구조물의 제조 잔류 열응력 제거를 위한 경화사이클에 관한 연구)

  • Kim Hak Sung;Park Sang Wook;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.83-87
    • /
    • 2004
  • In this work, the cure cycle of co-cured metal/composite structure was investigated to decrease fabricating thermal residual stresses between the metal and the composite material. DSC (Differential scanning calorimetry) experiment and static lap shear test of co-cured aluminum/composite double lap joint as well as the curvature experiment of co-cured steel/composite strip were performed to investigate the effect of curing cycle on the thermal residual stress of co-cured hybrid structures. From the experiments, it was found that post curing method after abrupt cooling of co-cured aluminum/composite hybrid structure at certain point of degree of cure during curing process could eliminate fabricating the thermal residual stresses.

  • PDF

Effect of Thermal Cycle on Strength of Ceramic and Metal Joint (세라믹/금속접합재의 강도에 미치는 열사이클 영향)

  • 박영철;오세욱;김광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.

Finite Element Simulation of Behavior of WBK Cored Sandwich Panels Subjected to Bending Loads (굽힘하중 하의 벌크형 와이어 직조 카고메 트러스 중간재를 갖는 샌드위치 판재의 기계적 거동)

  • Choi, Ji-Eun;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.353-359
    • /
    • 2009
  • Wire-woven Bulk Kagome (WBK) is a new truss type cellular metal fabricated by systematic assembling of helical wires in six directions. In this work, the experiments of mechanical behaviors of WBK cored sandwich panels subjected to bending load were performed and the results were compared with those by the corresponding analytic solutions. And also, finite element simulations were performed to validate the optimal design according to the analytic solutions. It is found the sandwich panel with WBK core performed excellently in terms of energy absorption and deformation stability after the peak point as well as the load capacity.

A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process (직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석)

  • 김영도;강충길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.