• Title/Summary/Keyword: Metal point

Search Result 1,068, Processing Time 0.03 seconds

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding (액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

Modal Analysis of Point and Discretized Continuous Spectra for Metal-Insulator-Metal Waveguides in the Terahertz Region

  • Hur, Jun;Choo, Hosung;Park, Jong-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1644-1654
    • /
    • 2018
  • Eigenvalue distributions for a periodic metal-insulator-metal waveguide, classified into the point spectrum and the discretized continuous spectrum (DCS), are investigated as functions of frequencies, gap widths, and periods. Muller's method is suggested for solving exact eigenvalues, and we propose the scheme for finding proper initial values in the Muller's method by considering only ${\Re}e({\varepsilon}_r)$ in the dispersion equation. We then find that anti-crossing behavior, repulsive effect between the point spectrum and the DCS, becomes stronger when the real parts of the roots in the point spectrum have smaller values. Finally, we examine the transmittances of a single subwavelength slit for real metals using the mode matching technique. The transmittances in real metals similarly follow those of the perfect electric conductor (PEC) at low frequencies, while the patterns at higher frequencies begin to differ from the PEC.

Ionic Wind Generation Characteristics of a Water-Pen Point-to-Mesh Type Discharge System (수침대 그물전극형 방전장치의 이온풍 발생특성)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.783-787
    • /
    • 2009
  • A point-to-mesh type discharge system, utilizing a water-pen point as a corona discharge electrode and a mesh as an ion induction electrode, has been proposed, and the effect of the water-pen point electrode of the discharge system to the ionic wind velocity and generation yield was investigated. It was observed that the proposed discharge system with the water-pen point electrode can generate a higher ionic wind velocity as compared with that of the metal point electrode. As a result, the peak ionic wind velocities of 2.61 and 4.05 m/s for the positive and negative corona discharges of the proposed discharge system can be obtained, which are 1.39 and 1.15 times higher than those of the metal point electrode with same design. The ionic wind generation yield of 4.72 m/s/W of the discharge system with the water-pen point electrode was obtained for the positive corona, which was 3.66 times higher than that of the metal point electrode. This enhancement may be due to the effect of the water-pen point electrode.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

The effect of preheat treatment on ceramic to metal bond strength (도재-금속의 결합 강도에 미치는 비금속 합금의 열처리 효과)

  • Kim, Chi-Young;Kim, Young-Gon; Cho, Hyun-Seol
    • Journal of Technologic Dentistry
    • /
    • v.24 no.1
    • /
    • pp.33-41
    • /
    • 2002
  • In dental prosthetics, the application of metal-ceramic restorations has steadily increased since their introduction. This is due to excellent esthetics in combination with high mechanical stability. In order to optimum bond strength between metal and ceramics, controlled oxidation of metal substructure is essential factor. Beryllium containing and beryllium free Ni-Cr alloys for metal-ceramic restorations were evaluated for the metal-ceramic bond strength by changing heat treatment for oxide formation. A mechanical three-point bending test was employed to evaluate the interfacial bond strength of metal-ceramic. In each metal, plate type specimens were used for mechanical three-point bending test. With Ni-Cr alloys for metal ceramics, mechanical three-point bending test showed that double degassing was more available preheat treatment method than another. It was found that beryllium containing Ni-Cr alloys are more effective than beryllium-free for metal-ceramic bond strength.

  • PDF

Study on the Forming and Springback Analyses of a Precision Metal Bellows (정밀 금속 벨로우즈 성형 및 스프링백 해석)

  • 이상욱
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.231-237
    • /
    • 2002
  • The manufacturing of a metal bellows consists of the four main forming processes; deep-drawing, ironing, tube bulging and folding. Among these, the bulging and folding processes are critically important because the quality of metal bellows is greatly influenced by the forming conditions of these processes. In the present study, the finite element analysis technique is applied to the bulging and folding processes. The springback analysis is also called out. From the analysis results, it has been revealed that around the crown point the stress state is in one-directional tension and one-directional bending mode. Meanwhile, around the inner point of metal bellows it is in two-directional bending mode. It has also revealed that the thickness of metal bellows around the crown point is nearly uniform.

Laser-assisted Selective Infiltration of tow Melting-point Metal Powders (저융점 금속분말 재료의 레이저 예열 선택적 용침)

  • H. Sohn;Lee, J. H.;J. Suh;D. Y. Yang
    • Laser Solutions
    • /
    • v.7 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Laser-assisted selective infiltration is a new method of building metal layers to make metal parts layer by layer, in which superheated microscopic metal droplets are infiltrated into a laser-preheated layer of microscopic metal powders. In this work, the selective infiltration of a low melting-point metal, Sn-37Pb wt%, was conducted to investigate the effects of such dominant parameters as superheating temperature, Nd:YAG laser power for preheating, substrate temperature, etc. The optimal conditions for successful selective infiltration of a single layer of microscopic metal powder were experimentally obtained

  • PDF

Development of Self-Actuated Shutdown System Using Curie Point Electromagnet

  • Kim, Tae-Ryong;Park, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • An innovative concept for a passive reactor shutdown system, so called self-actuated shutdown system(SASS), is inevitably required for the inherent safety in liquid metal reactor, which is designed with the totally different concept from the usual reactor shutdown system in LWR. SASS using Curie point electromagnet(CPEM) was selected as the passive reactor shutdown system for KALIMER (Korea Advanced Liquid MEtal Reactor). A mock-up of the SASS was designed, fabricated and tested. From the test it was confirmed that the mockup was self-actuated at the Curie point of the temperature sensing material used in the mockup. An articulated control rod was also fabricated and assembled with the CPEM to confirm that the control rod can be inserted into core even when the control rod guide tube is deformed due to earthquake. The operability of SASS in the actual sodium environment should be confirmed in the future. All the design and test data will be applied to the KALIMER design.

  • PDF