• Title/Summary/Keyword: Metal oxides

Search Result 672, Processing Time 0.027 seconds

Synthesis and Characterization of Novel Rare-earth Oxides Precursors

  • Lee, Euy Jin;Park, Bo Keun;Chung, Taek-Mo;Kim, Chang Gyoun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.366.1-366.1
    • /
    • 2014
  • The rare-earth oxides M2O3 (M=La, Pr, Gd) are good insulators due to their large band gap (3.9eV for Pr2O3, 5.6eV for Gd2O3), they have high dielectric constants (Gd2O3 K=16, La2O3 K=27, Pr2O3 K=26-30) and, compared to ZrO2 and HfO2, they have higher thermodynamic stability on silicon making them very attractive materials for high-K dielectric applications. Another attractive feature of some rare-earth oxides is their relatively close lattice match to that of silicon, offering the possibility of epitaxial growth and eliminating problems related to grain boundaries in polycrystalline films. Metal-organic chemical vapor deposition (MOCVD) has been preferred to PVD methods because of the possibility of large area deposition, good composition control and excellent conformal step coverage. Herein we report on the synthesis of rare-earth oxide complexes with designed alkoxide and aminoalkoxide ligand. These novel complexes have been characterized by means of FT-IR, elemental analysis, and thermogravimetric analysis (TGA).

  • PDF

Structure of Surface Oxide Formed on Zinc-Coated Steel Sheet During Hot Stamping

  • Shota Hayashida;Takuya Mitsunobu;Hiroshi Takebayashi
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2024
  • During hot stamping of hot-dip zinc-coated steel sheets such as hot-dip galvanized steel sheets and hot-dip galvannealed steel sheets, an oxide mainly composed of ZnO is formed on the sheet surface. However, excessive formation of ZnO can lead to a decrease in the amount of metal Zn in the coating layer, decreasing the corrosion resistance of hot-stamped members. Therefore, it is important to suppress excessive formation of ZnO. While the formation of Al oxides and Mn oxides along with ZnO layer during the hot stamping of hot-dip zinc-coated steel sheets can affect ZnO formation, crystal structures of such oxides have not been elucidated clearly. Thus, this study aimed to analyze structures of oxides formed during hot stamping of hot-dip galvannealed steel sheets using transmission electron microscopy. Results indicated the formation of an oxide layer comprising ZnAl2O4 at the interface between ZnO and the coating layer with Mn3O4 at the outermost of an oxide layer.

Carbon Containing Compositions

  • Mansurova, R.M.;Mansurov, Z.A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.5-15
    • /
    • 2001
  • The experiment established optimal conditions for over-carbonization. With the use of the electron microscopy and X-ray phase analysis the regularities of carbon deposit formation in process of methane and propane pyrolysis on the zeolites, Kazakhstan natural clays, chrome and bauxite sludge containing metal oxides of iron subgroup, have been studied. In process of over-carbonization the trivalent iron was reduced to metal form. In addition, the carbon tubes of divers morphology had been impregnated with ultra-dispersed metal particles. The kinetic parameters of carbon formation in process of methane decomposition on the zeolite - CoO mixture surface were investigated by method of thermo-gravimetric analysis. The morphology and structure of formed carbon fibrils, with the metal particles fixed at their ends, have been investigated, the formation of branched carbon fibrils pattern, so called octopus, being found. Also, the walnut shells and grape kernel carbonization, their immobilization by the cells of selective absorption of heavy metal and sulfur dioxide ions have been studied. The example of metal-carbon composites used as adsorbents for wastewater purification, C$_3$- C$_4$ hydrocarbon cracking catalysts and refractory materials with improved properties have been considered.

  • PDF

Fabrication of 1D Metal Oxide Nanostructures Using Glancing Angle Deposition for High Performance Gas Sensors

  • Suh, Jun Min;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.228-234
    • /
    • 2017
  • Gas sensors based on metal-oxide-semiconductors are predominantly used in numerous applications including monitoring indoor air quality and detecting harmful substances such as volatile organic compounds. Nanostructures, e.g., nanoparticles, nanotubes, nanodomes, or nanofibers, have been widely utilized to improve the gas sensing properties of metal-oxide-semiconductors by increasing the effective surface area participating in the surface reaction with target gas molecules. Recently, 1-dimensional (1D) metal oxide nanostructures fabricated using glancing angle deposition (GAD) method with e-beam evaporation have been widely employed to increase the surface-to-volume ratio significantly with large-area uniformity and reproducibility, leading to promising gas sensing properties. Herein, we provide a brief overview of 1D metal oxide nanostructures fabricated using GAD and their gas sensing properties in terms of fabrication methods, morphologies, and additives. Moreover, the gas sensing mechanisms and perspectives are presented.

A review of smart exsolution catalysts for the application of gas phase reactions (기상 반응용 스마트 용출 촉매 연구 동향)

  • Huang, Rui;Kim, Hyung Jun;Han, Jeong Woo
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.211-230
    • /
    • 2020
  • Perovskite-type oxides with the nominal composition of ABO3 can exsolve the B-site transition metal upon the controlled reduction. In this exsolution process, the transition metal emerges from the oxide lattice and migrates to the surface at which it forms catalytically active nanoparticles. The exsolved nanoparticles can recover back to the bulk lattice under oxidation treatment. This unique regeneration character by the redox treatment provides uniformly dispersed noble metal nanoparticles. Therefore, the conventional problem of traditional impregnated metal/support, i.e., sintering during reaction, can be effectively avoided by using the exsolution phenomenon. In this regard, the catalysts using the exsolution strategy have been well studied for a wide range of applications in energy conversion and storage devices such as solid oxide fuel cells and electrolysis cells (SOFCs and SOECs) because of its high thermal and chemical stability. On the other hand, although this exsolution strategy can also be applied to gas phase reaction catalysts, it has seldomly been reviewed. Here, we thus review recent applications of the exsolution catalysts to the gas phase reactions from the aspects of experimental measurements, where various functions of the exsolved particles were utilized. We also review non-perovskite type metal oxides that might have exolution phenomenon to provide more possibilities to develop higher efficient catalysts.

EPD Thick Film Formation of Ceramic Powder Materials (세라믹 분말재료의 EPD 후막형성 기술)

  • Soh, Dea-Wha;Jeon, Yong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.75
    • /
    • pp.49-54
    • /
    • 2006
  • Electrophoretic Deposition (EPD) is the most convenient technology to deposit natural or oxide powders of nonconductive materials in alcoholic suspension solution with adding electrolyte of iodine to form ceramic thick film on metal substrate under applied electric field with double electric layer between electrode and metal substrate. In this research work, the important parameters and technical ways were studied to form EPD thick films of typical oxide ceramics of Al2O3, YBCO and tourmaline powders.

-Physical Properties of Metal Thin Film-(Changes of Structure with Evaporation Rates) (금속박막의 물리적 성질(I)(증착속도에 따르는 구조변화))

  • 백수현;조현춘
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.980-985
    • /
    • 1987
  • The thin metal films of Cr, Al, Mn and were made in various evaporation rates with 100\ulcornerthickness under 2x10**-9 bar vacuum level. We analized and discussed the relationships between changes of structure, morphology and sheet resistance, light transmittance for the corresponding evaporation rates. As the evaporation rates were decreased at higher rates, grain sizes of all film were decreased, however both of the sheet resistance and light transmittance were increased. At lower evaporation rate, films of Cr and Cu porduced non-stoi-chiometric oxides but Al an Mn showed up amorphous structures.

  • PDF

The Effect of Metal-Oxide Coating on the Electrochemical Properties in Thin-Film $LiCoO_2$ Cathodes (금속산화물 코팅을 통한 박막 $LiCoO_2$양극의 전기화학적 특성 향상)

  • 김혜민;김병수;김용정;조재필;박병우
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.124-124
    • /
    • 2003
  • To improve the electrochemical properties of thin-film LiCoO$_2$ cathodes, metal oxides were coated on the LiCoO$_2$ thin films using f sputtering. Galvanostatic charge-discharge experiments showed the enhanced cycling behaviors in the metal-oxide coated LiCoO$_2$ thin films than the uncoated ones. These results are because the metal-oxide coating layer suppresses the degradation of Li-diffusion kinetics during cycling, which is related to the protection of cathode surface from the electrolytes [l-3]. The variation in the metal-oxide coating thickness ranging from 10 to 300 nm did not affect the electrochemical properties. Changes of lattice constants in the coated and bare LiCoO$_2$ thin films at different charged states will also be discussed.

  • PDF

Catalytic Combustion of Acetaldehyde by Metal Phthalocyanines (금속 프탈로시아닌을 이용한 아세트알데히드의 촉매연소)

  • 서성규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.4
    • /
    • pp.409-414
    • /
    • 2000
  • Catalytic combustion of acetaldehyde has been investigated as a representative of unpleasant odor by its reaction with metal-phthalocyanines(PC). The experiment was conducted at the reaction temperature of 200~41$0^{\circ}C$ and the concentratio of acetaldehyde in air at the range of 0.07~0.94 mole% The pretreated metal-PC has been characterized by UV-VIS and XRD analysis. According to this study catalytic activity of metal -PC was improved by air pretreatment at 45$0^{\circ}C$ for 1hr. Under this pretreatment condition Co-PC and Cu($\alpha$)-PC were destroyed and new metal oxides were formed such as Co3O4 and CuO respectively. However Zn-PC retained its basic structure even afte air pretreatment. The order of catalytic activity on acetaldehyde combustion was summarized as follows : Zn-PC$\alpha$)-PC. It was found that the complete combustin of acetaldehyde with Cu($\alpha$)-PC was accomplished at its concentrations below 0.2mole% (32$0^{\circ}C$) and 0.6 mole%(35$0^{\circ}C$) in air.

  • PDF

IR Edge and Oxide Impurity Absorption in Heavy Metal Fluoride Glasses (플루오르화중금속 유리의 적외선에지 및 산화물(불수물) 흡수)

  • 정기호
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.29-34
    • /
    • 1985
  • The IR spectra of he heavy metal fluoride glasses showed peaks at $1, 400cm^{-1}$ or $1, 100cm^{-1}$ due to metal oxyfluoride impurities. The intensity of this band and hence the oxide impurity content of the glass could be reduced considerably by the use of reactive atmosphere melting under $CCl_4$ In comparison with the fundamental IR absorption band of heavy metal oxides the oxide impurity bands observed in the heavy metal fluoride glasses are multiphonon bands due to a 2-phonon absorption process. The envelope of the a vs. v curve beyond thue fundamental region shows the exponential fall off of a with increasing v-typical of intrinsic multiphonon absorption. In the multiphonon region the amount of structure is intermediate between that observed for covalent solids and that for ionic solids.

  • PDF