• 제목/요약/키워드: Metal molding

검색결과 277건 처리시간 0.028초

각통드로잉 제품의 모서리 재료두께 변화에 영향을 미치는 인자에 대한 해석 연구 (A study on the factors influencing at corner area material thickness changes of rectangular drawing products)

  • 윤재웅;조상희;이춘규
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.22-29
    • /
    • 2020
  • The analysis was carried out using the press molding analysis program by applying six parameters such as material type change, material thickness, friction coefficient, rp, rd and blank holder pressure. As a result of CAE analysis of the soft material DC04 and the relatively hard material HX300LAD, the thickness of the punch R part of the soft material was significantly reduced. The flange portion is greatly increased in thickness in the hard material by the compression action. As a result of considering the deformation amount of 0.6mm, 1.0mm, 1.5mm according to the material thickness, the influence of the thickness is considered to be very small. In case of the material thickness of 0.6mm, the rate of change increases due to the deep drawing depth relative to the material thickness. The sizes of the punches R and die R have the greatest influence on the change in thickness of the material in drawing molding, the smaller the punch R, the thinner the edges of the product, The larger the R of the die, the greater the material thickness of the flange portion. As the coefficient of friction and the blank holder pressure increase, the frictional force of the flange portion increases, which increases the radial force in the drawing process and increases the thickness change of the flange portion.

플라즈마 공정으로 구상화된 티타늄 분말과 금속사출성형 공정을 이용한 치과용 부품 제조 (Preparation of Metal Injection Molded Dental Components using Spheroidized Ti Powders by Plasma Process)

  • 곽지나;양상선;윤중열;김주용;박성진;김현승;김용진;박용호
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.467-473
    • /
    • 2013
  • This research presents a preparation method of dental components by metal injection molding process (MIM process) using titanium scrap. About $20{\mu}m$ sized spherical titanium powders for MIM process were successfully prepared by a novel dehydrogenation and spheroidization method using in-situ radio frequency thermal plasma treatment. The effects of MIM process parameters on the mechanical and biological properties of dental components were investigated and the optimum condition was obtained. After sintering at $1250^{\circ}C$ for 1 hour in vacuum, the hardness and the tensile strength of MIMed titanium components were 289 Hv and 584 MPa, respectively. Prepared titanium dental components were not cytotoxic and they showed a good cell proliferation property.

적외선 렌즈용 BaO-GeO2-La2O3-ZnO-Sb2O3계 중금속 산화물 유리의 특성 (Characteristics of Heavy Metal Oxide Glasses in BaO-GeO2-La2O3-ZnO-Sb2O3 System for Infrared Lens)

  • 박상진;오복현;이상진
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.414-421
    • /
    • 2023
  • Infrared radiation (IR) refers to the region of the electromagnetic radiation spectrum where wavelengths range from about 700 nm to 1 mm. Any object with a temperature above absolute zero (0 K) radiates in the infrared region, and a material that transmits radiant energy in the range of 0.74 to 1.4 um is referred to as a near-infrared optical material. Germanate-based glass is attracting attention as a glass material for infrared optical lenses because of its simple manufacturing process. With the recent development of the glass molding press (GMP) process, thermal imaging cameras using oxide-based infrared lenses can be easily mass-produced, expanding their uses. To improve the mechanical and optical properties of commercial materials consisting of ternary systems, germanate-based heavy metal oxide glasses were prepared using a melt-cooling method. The fabricated samples were evaluated for thermal, structural, and optical properties using DSC, XRD, and XRF, respectively. To derive a composition with high glass stability for lens applications, ZnO and Sb2O3 were substituted at 0, 1, 2, 3, and 4 mol%. The glass with 1 mol% added Sb2O3 was confirmed to have the optimal conditions, with an optical transmittance of 80 % or more, a glass transition temperature of 660 ℃, a refractive index of 1.810, and a Vickers hardness of 558. The possibility of its application as an alternative infrared lens material to existing commercial materials capable of GMP processing was confirmed.

분말사출성형을 이용한 다수 캐비티 치과용 요오드 용기 금형제작에 관한 연구 (A Study on mold manufacture of multi-cavity dental iodine container using powder injection molding)

  • 최재훈
    • 한국산학기술학회논문지
    • /
    • 제15권1호
    • /
    • pp.21-26
    • /
    • 2014
  • 치과에서 사용되는 구강 치료용 요오드 용기는 개폐 시 용기의 캡에 부착되어 있는 칼날에 의해 치료용 실은 절단이 된다. 금속의 칼날은 요오드 용액과 반응하여 단기간에 부식이 되는 문제로 인해 환자의 위생에도 영향을 준다. 이러한 문제를 해결하기 위해 최근 세라믹 칼날로 대체되어진 제품들도 개발되어 생산되는데, 이때 세라믹 칼날은 수작업과 기계가공을 통해 만들어 진다. 본 연구에서는 세라믹 칼날을 분말사출성형공정으로 대량 생산할 수 있도록 20Cavity의 균일 충전을 위한 유동 시스템을 제안하였다. Moldflow를 이용하여 20cavity 유동성에 대한 시뮬레이션을 진행하였고, 금형제작과 수정을 통해 금형을 완성하였다. 사출성형 후 탈지와 소결공정을 통해 완성하고, 금형에 세라믹 칼날을 인서트 사출하여 캡 제품을 완성하였다. 본 연구를 통해 유효한 절단 성능을 갖는 세라믹칼날 대량생산 가능성을 검증하였다.

Nylon-Inorganic Filler Alloy상의 니켈 도금 기술 (Nickel Plating Techniques of Nylon-Inorganic Filler Alloy)

  • 노윤찬
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.67-72
    • /
    • 1999
  • Nylon-inorganic filler alloy의 도금에 있어 최적 전처리 공정에 관하여 연구하였다. Nylon-inorganic filler alloy는 etching 공정만으로도 무정형층을 제거하여 요구되는 충분한 밀착력을 얻을 수 있었다. SEM과 표면조도 측정으로부터 etching 공정이 수지표면을 매우 거칠고 접착력을 우수하게 만든다는 결과를 얻었으며, 도금물질의 표면상태와 접착력은 Nylon-inorganic filler alloy 수지의 성형조건에 의존한다는 것을 확인하였다. EDS 분석으로 전처리 후 수지표면의 잔류금속의 종류와 양을 측정한 결과 Cr은 Sn과 Pd의 흡착에 크게 영향을 미치지 않는 것으로 나타났다.

  • PDF

레이저 적층 마레이징강의 기계적 특성 및 피로 특성 (Fatigue and mechanical properties of laser deposited maraging steel)

  • 홍석관
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.36-41
    • /
    • 2018
  • Metal 3D printing is very useful for making the injection molds containing complex conformal cooling channels. The most important issue of the 3D printed molds is cost and life cycle. However, powder bed fusion (PBF) methods are vulnerable to fatigue loading because of the presence of pores and rough surfaces. In the present study, the fatigue test was performed to obtain fatigue analysis input data for predicting the durability of a 3D printed injection mold core. The metal 3D printer used to manufacture the specimen was OPM250L from Sodick, and the metal powder material was maraging steel. The ultrasonic fatigue testing method was adopted for the fatigue test. A key advantage of the ultrasonic fatigue method is that $10^8{\sim}10^9$ long cycle test data or more could be obtained within a relatively short period. Based on the results of the experiment, the effect of heat treatment was negligible. However, there was an apparent difference in durability depending on the presence or absence of the surface treatment.

A manufacturability measurement for design for manufacturing in net shape process

  • Lee, Chang-Ho
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1994년도 춘계공동학술대회논문집; 창원대학교; 08월 09일 Apr. 1994
    • /
    • pp.467-477
    • /
    • 1994
  • The objective of this research is to develop a manufacturability measurement model for process and material screening. The process and material screening is the key requirement for implementing the Design for Manufacturability (Concurrent Engineering). A computerized system realizing this model then is developed to aid designers. Identification of the key factors which influence technical manufacturability, decision variables and their characteristics, conceptual framework for implementing the model are suggested. Manufacturability measure for quantifying the consistency of between the product requirements and the manufacturing capability is important contribution of this research. The focus is on net shape manufacturing process such as diecasting, forging, metal forming and injection molding.

반도체 산업의 정밀리드프레임에 대한 프레스 및 금형 변형 예측 (Press and Die Deformation for a Precise Semiconductor Lead Frame)

  • 홍석무;윤여환;엄성욱;황지훈;이동욱
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.206-210
    • /
    • 2014
  • The metal lead frame, a semiconductor component, has product tolerances in micro units as compared to products made with a larger size mold. Therefore, small deflections of the mold and of the press as well as the press molding process itself have a strong influence on accuracy of the product. Hence, it is necessary for the process design to consider the structural response of the mold and the press during deformation. In the current study, the mold deflection and pressure on the punch is examined using the finite element modeling (FEM) program ABAQUS. The results from the simulation were verified with the dynamic deformation measurement equipment using digital image correlation (DIC).

원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구 (Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race)

  • 김화정;진철규
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.