• Title/Summary/Keyword: Metal matrix composites

Search Result 336, Processing Time 0.029 seconds

A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution) (금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우))

  • Lee, Joon-Hyun;Son, Bong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation.

  • PDF

Development of Novel Ceramic Composites by Active Filler Controlled Polymer Pyrolysis with Tungsten (중석이 첨가된 고분자 유기물 열분해 방법에 의한 신세라믹복합체 개발)

  • ;;Peter Greil
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.939-944
    • /
    • 1998
  • The formation microstructure and properties of novel ceramic composite materials by active filler con-trolled polymer pyrolysis were investigated. Polymethlsiloxane filled with W is of particular interested be-cause of the formation of ceramic bonded hard materials (WC-$W_{2}C$-$S_{1}OC$) for wear resistant applications. Highly metal-filled polymer suspensions were prepared and their conversion to ceramic composites by an-nealing in $N_{2}C$ atmosphere at 1000-$1600^{\circ}C$ were studied. Dimensional change porosity and phase distribution (filler network) were analyzed and correlated to the resulting material properties. Microcrystalline com-posites with the filler reaction products embedded to the resulting material properties. Microcrystalline com-posites with the filler reaction products embedded in a silicon oxycarbide glass matrix were produced. De-pending on the pyrolysis conditions ceramic composites with a density up to 95 TD% a hardness of 7-8.8GPa Yong's modulus of 220-230 GPa a fracture toughness of 6-6.8$MPam^{1/2}$ and a flexual strength of 380-470 MPa were obtained.

  • PDF

Improvement of Impact Resistance of B4C Tile Inserted B4Cp/Al7075 Hybrid Composites Through Interface Control (B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재의 계면 제어를 통한 내충격 특성의 향상)

  • Park, Jongbok;Lee, Taegyu;Lee, Donghyun;Cho, Seungchan;Lee, Sang-Kwan;Hong, Soon Hyung;Ryu, Ho Jin
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.235-240
    • /
    • 2020
  • In this study, in order to improve the impact resistance of the B4C tile-inserted B4Cp/Al7075 hybrid composite, a control method of the B4C/Al7075 interface was developed and the characteristics of the controlled interface were analyzed. B2O3, Ni, and Si were coated on the B4C tile surface using additional thermal oxidation, electroless plating, and plasma spraying. The coated B4C tile is inserted into the B4Cp/Al7075 composite material using the liquid pressurization method. Interfacial energy, bonding strength, and impact resistance were measured to analyze the effect of the coating. All coatings enhanced interfacial energy, bonding strength, and impact resistance, and in particular, it was confirmed that the impact resistance increased by 86.8% when B2O3 coating was used. This study is significant in developing and analyzing a core surface treatment method that improves the performance of B4C/Al series composites, which are attracting attention as next-generation lightweight amour and bulletproof materials.

A Study on the Mechanical Properties of AC8A/$Al_2O_3$ Composites. (용탕단조법에 의한 AC8A/$Al_2O_3$ 복합재료의 기계적 성질에 관한 연구)

  • Kim, Ki-Bae;Kim, Kyoung-Min;Cho, Soon-Hyung;Yoon, Eui-Park
    • Journal of Korea Foundry Society
    • /
    • v.11 no.6
    • /
    • pp.475-481
    • /
    • 1991
  • In this study the fabrication technology and mechanical properties of AC8A/$Al_2O_3$ Composites by squeeze casting process were investigated to develope for application as the piston materials that require good friction, wear resistance, and thermal stability. AC8A/$Al_2O_3$ composistes without a porosity and the break of preform were fabricated at the melt temperature of $740^{\circ}C$, the preform temperature of $500^{\circ}C$, and mold temperature of $400^{\circ}C$ under the applied pressure of $1200kg/cm^2$ as the results of the observation of microstructures. As the results of this study, the tensile strength of AC8A/$Al_2O_3$ composites was not increased linearly with $Al_2O_3$ volume fraction and so it seemed not to agree with the rule of mixture, which had been used often in metal matrix composite. Also the tensile strength after thermal fatigue test was little different from that before the test. Consequently it was thought that AC8A/$Al_2O_3$ composites fabricated under our experimental conditions had a good thermal stability and subsequently a good interface bonding. Wear rate(i.e., volume loss per unit sliding distance) of AC8A/$Al_2O_3$ composites was decreased with $Al_2O_3$ volume fraction and the sliding speed at both room temperature and $250^{\circ}C$ and so there was a good correlation between wear rate and hardness. Also the wear rate of AC/8A20% $Al_2O_3$ composities was obtained the value of $1.65cm^3/cm$ at sliding speed of 1.14m/sec as compared with about $3.0\;{\times}10^{-8}cm^3/cm$ hyereutectie Al-Si alloy(Al-16%Si-2%Cu-1%Fe-1%Ni), which applied presently for piston materials. The wear behavior of $Al_2O_3$ composites was observed to a type of abrasive wear by the SEM view of wear surface.

  • PDF

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF

Modeling the Heterogeneous Microstructures of Ti-MMCs in Consolidation Process (강화공정에 따른 비균질 티타늄 금속기 복합재료 모델링)

  • Lee Soo-Yeun;Kim Tae-Won
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.21-30
    • /
    • 2005
  • Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil method. Heterogeneous microstructures prior to and following consolidation have been quantified, and the relations to densification behavior investigated. As shown by the results, dramatic variations of the microstructures including equiaxed $\alpha$, transformed $\beta$ and $ Widmanst\ddot{a}tten$ $\alpha$ are obtained during the process according to the fiber distributions. The dependence of microstructures on the consolidation then has been explained in terms of the change in mechanisms such as grain growth and recrystallization that occur with changing levels of inhomogeneity of deformation. Further, micro-mechanics based constitutive model enabling the evolution of density over time together with the evolutions of microstructure to be predicted has been developed. The mode developed is then implemented into finite element scheme so that practical process simulation has been carried out.

Preparation of Ag/PVP Nanocomposites as a Solid Precursor for Silver Nanocolloids Solution

  • Hong, Hyun-Ki;Park, Chan-Kyo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1252-1256
    • /
    • 2010
  • A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to $130^{\circ}C$ to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as $110^{\circ}C$. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent.

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method

  • Minh, Thuyet-Nguyen;Hong, Hai-Nguyen;Kim, Won Joo;Kim, Ho Yoon;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.213-220
    • /
    • 2016
  • In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.