• Title/Summary/Keyword: Metal leaching

Search Result 352, Processing Time 0.02 seconds

Determining the reuse of metal mine wastes based on leaching test and human health risk assessment

  • Ju, Won Jung;Hwang, Sun Kyung;Jho, Eun Hea;Nam, Kyoungphile
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.82-90
    • /
    • 2019
  • Meeting the regulations based on the short-term leaching tests may not necessarily assure the environmental and human health safety of reusing mine wastes. This study investigated heavy metal leachability of four metal mine waste samples (e.g., Z, Y, H, and M) and human health risk of reusing them as construction materials. The heavy metal leachability did not depend on the total heavy metal contents. For example, the Z sample contained greater amounts of As and Fe than Zn, but the leachates contained only Zn at a detectable level. This can be attributed to the crystalline structure and heavy metal fractions of the mine wastes. The leaching test results suggested that the four mine waste samples are potentially reusable. But the Z and M samples reused in industrial areas imposed carcinogenic risks. This was largely attributed to As that is exposed via dermal contact. The Y and H samples reused in residential areas imposed carcinogenic risk. The major exposure route was the ingestion of crops grown on the mine wastes and Cr was the major concern. The two-stage assessment involving leaching tests and risk assessment can be used to promote safe reuse of mine wastes.

Review of Heap leaching Technologies (더미 침출에 대한 소고)

  • 정승재;조종상;이재장
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.3-12
    • /
    • 1998
  • The most recent research in precious metal processing is found in the increasing use of heap leaching for the extraction of gold from low grade ores and tailing dumps because heap leaching has several advantages compared to traditional milling. They include simplicity, lower capital and operating costs, faster starter-up time and environmental safety. In this paper, an attempt has been made to provide an overview of important factors involved in the implementation of heap leaching technology as a vehicle for gold extraction from its low grade ores. Brief discussions of the various important elements to this process has been made to ascertain the heap leaching characteristics, such as heap leaching chemistry, natural factors, ore preparation, heap and pad construction, solution collection system, pond system, metal extraction, and economical consideration.

Leaching of Metal Sulfides and the Stability of Reaction Intermediates (황화광의 침출반응 및 중간생성물의 안정도)

  • Lee, Man Seung;Choi, Seung Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.3-7
    • /
    • 2018
  • Development of extractive metallurgical processes for metal sulfides has become of importance owing to the depletion of oxide ores with rich metal contents. Most of the leaching reactions of metal sulfides is electrochemical reaction and can be classified as $H_2S$, S, and ${SO_4}^{2-}$ evolution type. The acidity of leaching solution and the presence and concentration of an oxidizing agent affect the formation of reaction intermediates containing sulfur. Frost diagram of sulfuroxoanion indicates that the oxoanions with higher oxidation number are more thermodynamically stable in the presence of oxidizing agents.

Characterization of colloid/interface properties between clay and EAF dust (점토와 전기로 제강분진의 콜로이드/계면 특성 분석)

  • Lee, Jee-Young;Lee, Ki-Gang;Kim, Yoo-Taek;Kang, Seung-Gu;Kim, Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.76-81
    • /
    • 2006
  • The leaching behavior of heavy metal ions with pH and colloid/interface property was analyzed by ICP and SEM. The heavy metals in EAF dust are 'amphoteric metal' and the heavy metal ions leached a little at pH 10. And the leaching concentrations of heavy metals at pH 12 were higher than the that at pH 8. The leaching concentrations of heavy metal ion were decreased with adding the clay to the EAF dust. Especially, the leaching concentrations of heavy metal ion were effectively decreased at pH 12. The observation of colloid/interface properties shows that the soluble silicon hydroxide from clay at pH 12 was precipitated at the surface of the heavy metal and clay particles. This silicon hydroxide precipitates were named the PSHP. The leaching concentrations of heavy metal ion were effectively decreased by the formation of PSHP when adding the clay to the EAF dust and controlling the pH of the slurry at 12.

A Study on Improvement of Valuable Metals Leaching and Distribution Characteristics on Waste PCBs(Printed Circuit Boards) by Using Pulverization Process (폐 PCBs의 미분쇄 공정 적용에 따른 유가금속 분포 특성 및 금속 침출 향상에 관한 연구)

  • Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2015
  • The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.

Assessment of Leaching Characteristics of Alkaline and Heavy Metal Ions from Recycled Concrete Aggregate (자원순환을 위한 폐콘크리트 순환골재의 알칼리 및 중금속 용출특성 평가)

  • Shin, Taek-Soo;Hong, Sang-Pyo;Kim, Kwang-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.427-437
    • /
    • 2013
  • Generation rate of construction wastes in Korea has occupied preponderantly in recent years. To understand chemical properties of recycled concrete aggregate (RCA), RCA samples were tested for their leaching characteristics. Leaching tests were conducted according to Korean Standard Leaching Test (KLT) and Toxicity Characteristics Leaching Procedure (TCLP) respectively. The RCA samples were characterized using X-ray fluorescence (XRF). Alkalinity of the leachate was determined using a pH meter titration method. The XRF analysis result shows that the calcium oxide (CaO) content in the RCA sample is 25.3~50.4 %. When the RCA sample was mixed with water in a batch reactor, pH in the solution was rapidly increased, and 70% of the total pH change was found in 1 hour. The TCLP showed slightly higher efficiency for leaching heavy metals than the KLT. The leaching efficiency was also higher as the particle size of RCA sample was smaller. The leaching test results suggest that RCA can be generally classified as nonhazardous waste.

The Solidification of the Heavy Metal Ion by Using DSP Cement (DSP 시멘트를 이용한 중금속 이온의 고화)

  • 소정섭;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.889-894
    • /
    • 1996
  • This study was subjected to the stabilization of heavy metals using DSp cement. Heavy metal Cr and Pb ions were mixed with cement paste and hydration behavior and leaching property by heavy metal were exami-ned. It was found that, Cr ion accelerated the early hydration of the cement and has no accelerating effect in later hydration period. However Pb ion retarded the hydration of the cement for a early hydration periods. As a result of leaching test the quantity of leachant has a very low value and the influence of leached heavy metal effected on the environments is very weak.

  • PDF

Comparison of the Chemical Reactivity between Sulfuric and Methanesulfonic Acids as a Leaching Agent (침출제로 황산과 메탄술폰산의 화학적 반응성 비교)

  • Tran, Thanh Tuan;Moon, Hyun Seung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.41-46
    • /
    • 2021
  • Methanesulfonic acid (MSA) can be considered effective in the leaching of metals because of its advantageous physical and chemical properties. The chemical reactivities of MSA and sulfuric acid were compared based on their structures and the dissolution data of Co and Ni metal. The inductive and resonance effects play a vital role in the chemical reactivities of these two acids. The dissolution percentages of Co and Ni in the sulfuric acid solution were higher than those in the MSA solution under the same experimental conditions. Considering the strong acidity of MSA and the high solubility of its metal salts, MSA can be employed as a leaching agent for the recovery of metals.

Leaching of Rare Metals from Spent Petroleum Catalysts by Organic Acid Solution (석유화학공정 폐촉매에 함유된 희유금속의 유기산 침출)

  • Le, Minh Nhan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.36-45
    • /
    • 2019
  • The spent petroleum catalysts contain rare metals such as vanadium, nickel, molybdenum, and cobalt. Therefore, the leaching of these rare metals from spent petroleum catalysts by organic acid was investigated in the present study. The leaching efficiency of metals by organic acid was in the following order: oxalic acid > tartaric acid > citric acid > maleic acid > ascorbic acid. Among the organic acids employed in this work, oxalic acid can be considered to be superior to the other acids in terms of metals leaching efficiency. The effect of several leaching conditions such as temperature, acid concentration, pulp density, stirring speed, and reaction time on the leaching of metals was investigated. Vanadium and molybdenum were selectively dissolved by oxalic acid from the spent catalysts. The leaching kinetics of vanadium by oxalic acid was also investigated. An activation energy of 8.76 kJ/mol indicated that the leaching kinetics of vanadium by oxalic acid solution was controlled by mass transfer.

Assessment of Environmental Contamination caused by the Stone-dust using Leaching Tests (용출실험에 의한 석분토의 지표환경 오염 평가)

  • Kang, Min-Ju;Lee, Pyeong-Koo;Youm, Seung-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.52-60
    • /
    • 2010
  • The stone-dust is an unavoidable by-product of aggregate production, which is produced about 0.8~1.0 million $m^3$ annually. The stone-dust is currently regarded as a hazard material on environment because it is classified as an industrial waste in the Waste Management Law of Korea. At present, the stone-dust is considered as a environmentally hazardous material, and is classified as an industrial waste according to the Waste Management Law of Korea. In this study, we assessed the heavy-metal contamination of the stone-dust on surrounding environments by various leaching tests. Leaching experiments (such as Korea Standard Leaching Procedure (KSLP), Soil Environment Preservation Act of Korea (SEPAK), Toxicity Characteristic Leaching Procedure (TCLP), and Synthetic Precipitation Leaching Procedure (SPLP)) show that very low heavy metals (As, Cd, Cu, Pb, Zn, Hg) and CN are leached out, or much less than each regulatory thresholds. The resuts of the leaching test with time in acidic solution (initial pH 5 and 3) indicate that pH-buffering minerals are present in the stone-dust. These results suggest that the stone-dust can not potentially affect adverse impact on surrounding environments such as surface water, groundwater and soil etc..