• Title/Summary/Keyword: Metal laser sintering

Search Result 75, Processing Time 0.026 seconds

Experiments on Selective Laser Sintering of WC-Co Mixture for Rapid Metal Tooling (쾌속 금형 제작을 위한 텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결 실험)

  • 김광희;조셉비만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.661-669
    • /
    • 2002
  • Rapid tooling technique enables us to make dies and molds that produce prototype parts with the correct material at a substantially reduced cost and time. In this study, experiments on selective laser sintering of tungsten carbide-cobalt mixture were carried out to find optimal sintering conditions that will be applied to rapid metal tooling. The experiments were carried out within an air, an argon and a nitrogen atmosphere. Coupons of single layer were sintered at various laser powers, scanning speeds and scan spacings. Very severe oxidation took place within an air atmosphere. The oxidation is reduced significantly within an argon and a nitrogen atmosphere. The thickness of the sintered coupons is increased as the energy density, the laser energy Per unit scanned area, is increased. Several multi-layer sintering experiments were also carried out.

Fixed prostheses fabricated by direct metal laser sintering system: case report (Direct metal laser sintering 방식을 이용하여 제작한 다양한 고정성 보철물 수복 증례)

  • Baek, Ju-Won;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.246-254
    • /
    • 2016
  • Nowadays, 3 dimentional (3D) printing, especially Direct Metal Laser Sintering (DMLS) system is used in dentistry. DMLS system has recently been introduced for fabrication metal framework for metal ceramic crowns to overcome the disadvantages of the casting method and computer aided design/computer aided manufacturing (CAD/CAM) milling system. DMLS system uses a high-temperature laser beam to selectively heat a substructure metal powder based on the CAD data with the framework design. A thin layer of the beamed area becomes fused, and the metal framework is completed by laminating these thin layers. Utilizing DMLS system to fabricate fixed prostheses is expected to achieve free-from shaping without mold and limitations from cutting tools, fabricate prostheses with complex geometry, prevent distortion and fabrication defects that inherent to conventional fabrication methods. The purpose of this case report is to demonstrate various fixed prostheses such as long span fixed prostheses, post to achieve satisfactory results in functional and esthetic aspects.

Densification Kinetics of Steel Powders during Direct Laser Sintering

  • Simchi, Abdolreza;Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.250-251
    • /
    • 2006
  • It is known that powder characteristics including particle size and distribution, particle shape, and chemical composition are important parameters which influence direct laser sintering of metal powders. In this paper, we introduce a first order kinetics model for densification of steel powders during laser sintering. A densification coefficient (K) is defined which express the potential of different powders to be laser-sintered to a high density dependent on their particle characteristics.

  • PDF

Comparative evaluation of marginal and internal fit of three-unit Co-Cr frameworks fabricated by metal milling and direct metal laser sintering methods (금속 밀링과 직접 금속 레이저 소결 방식으로 제작한 3본 코발트-크롬 구조물의 변연 및 내부 적합도 비교 평가)

  • Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.81-89
    • /
    • 2020
  • Purpose: This in vitro study was conducted to evaluate the marginal and internal fit of three-unit Co-Cr frameworks fabricated by computer-aided metal milling and direct metal laser sintering(DMLS) systems in comparison to conventional casting method. Methods: Three-unit Co-Cr frameworks were fabricated by conventional wax up with casting(CWC), computer-aided metal milling(MM) and direct metal laser sintering(DMLS)(n=10 each). The marginal and internal fit of specimens were examined using a light-body silicone impression material. The thickness of light-body silicone was measured at eight reference points each, divided in the mesio distal and bucco lingual directions. All measurements were conducted by a stereomicroscope. Digital photos were taken at 150× magnification and then analyzed using a measurement software. The Kruskal-Wallis test and Bonferroni correction were used for analyzing the results. Results: The mean(SD) is ㎛ for fabrication methods, the mean marginal fit were recorded respectively, DMLS 39(27), followed by CWC 63(38), MM 220(128). and the mean internal fit CWC 95(47), DMLS 116(49), MM 210(152). In addition, the largest gap was found in the occlusal surface area among the internal measurement areas of all groups. Conclusion: As a result, the direct metal laser sintering method showed better marginal and internal fit than the metal milling method. The marginal and internal fit were statistically different according to the three fabrication methods(p<0.001). Except the MM group, the marginal fit of the CWC and DMLS groups was below the clinical standard of 120 ㎛. Based on the results of this study, it can be applied to clinical use in the future.

Direct Metal Laser Sintering-New Possibilities in Biomedical Part Manufacturing

  • Kotila, Juha;Syvanen, Tatu;Hanninen, Jouni;Latikka, Maria;Nyrhila, Olli
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.248-249
    • /
    • 2006
  • Direct Metal Laser Sintering (DMLS) has been utilized for prototype manufacturing of functional metal components for years now. During this period the surface quality, mechanical properties, detail resolution and easiness of the process have been improved to the level suitable for direct production of complex metallic components for various applications. The paper will present the latest DMLS technology utilizing EOSINT M270 laser sintering machine and EOSTYLE support generation software for direct and rapid production of complex shaped metallic components for various purposes. The focus of the presentation will be in rapid manufacturing of customized biomedical implants and surgical devices of the latest stainless steel, titanium and cobalt-chromium-molybdenum alloys. In addition to biomedical applications, other application areas where complex metallic parts with stringent requirements are being needed will be presented.

  • PDF

An analysis of marginal adaptation of metal cores fabricated by selective laser sintering (레이저선택용융기술에 의해 제작된 금속 코어의 변연 적합도 분석)

  • Kim, Won-Soo;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • Purpose: The purpose of this study were to analysis of marginal adaptation of metal cores fabricated by selective laser sintering. Methods: Main model was prepared and ten stone models were fabricated. Ten single metal cores were fabricated by selective laser sintering(SLS group) and another ten single metal cores using lost wax technique and casting method were manufactured(CAST group). The marginal adaptation of metal cores were analysis using by the silicone replica technique. Silicone replicas were sectioned two times. The marginal adaptations were measured using by digital microscope. Statistical analyses was performed with independent t-test(${\bullet}{\cdot}=0.05$). Results: Means of marginal adaptations were 90.3 ${\ss}{\uparrow}$ for SLS group and 65.1 ${\ss}{\uparrow}$ for CAST group. Two groups were statistically significant differences (p < 0.05). Conclusion: Marginal adaptation of metal cores fabricated by selective laser sintering were ranged within the clinical recommendation.

DMLS (Direct Metal Laser Sintering) denture repair technique for a removable partial denture: A case report (DMLS (Direct Metal Laser Sintering) 기술을 이용한 가철성 국소의치 수리 증례)

  • Jang, Eun-Sun;Jang, Geun-Won;Byun, Jae-Joon;Kong, Dae-Ryong;Song, Joo-Hun;Lee, Gyeong-Je
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.3
    • /
    • pp.251-256
    • /
    • 2020
  • In recent years, digital technology has been developed in dentistry, which denture frameworks can be manufactured using DMLS (Direct Metal Laser Sintering) technique. A traditional impression method can be replaced by oral scanning and wax pattern production process can be achieved by the use of CAD/CAM techniques. The designed STL files can be sent to DMLS devices to fabricate final components of removable partial dentures (RPD). The advantages of digital dentistry are concision and precision. In this case study, a fracture of occlusal rests providing support and indirect retention was repaired by DMLS and laser welding techniques. It shows satisfactory results in adaptation accuracy and functional properties of the repaired denture.

Investigation of Influence of Pulse-periodical Laser Radiation Power on Stability of Liquid-metal Contacts between Powder Particles during Selective Laser Sintering

  • Beljavin, K.E.;Minko, D.V.;Bykov, R.P.;Kuznechik, O.O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.518-519
    • /
    • 2006
  • A connection between pulse-periodical laser radiation power and stability of liquid-metal contacts between powder particles during selective laser sintering (SLS) is determined based on analysis solving the problem of stability of liquid column in the gravity and capillary forces field. On the grounds of obtained relationships the optimization of pulse-periodical laser radiation power and SLS-process duration is realized, that allows to produce voluminous powder porous materials with pre-determined physical and mechanical properties and surface geometry. Results of metallographic investigations of powder porous materials of titanium powder produced with technological regimes calculated by means of obtained relationships are given in the work

  • PDF

Status of Research on Selective Laser Sintering of Nanomaterials for Flexible Electronics Fabrication (나노물질의 선택적 레이저소결을 이용한 유연전기소자 구현 연구현황)

  • Ko, Seung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.533-538
    • /
    • 2011
  • A plastic-compatible low-temperature metal deposition and patterning process is essential for the fabrication of flexible electronics because they are usually built on a heat-sensitive flexible substrate, for example plastic, fabric, paper, or metal foil. There is considerable interest in solution-processible metal nanoparticle ink deposition and patterning by selective laser sintering. It provides flexible electronics fabrication without the use of conventional photolithography or vacuum deposition techniques. We summarize our recent progress on the selective laser sintering of metals and metal oxide nanoparticles on a polymer substrate to realize flexible electronics such as flexible displays and flexible solar cells. Future research directions are also discussed.