• Title/Summary/Keyword: Metal injection molding analysis

Search Result 52, Processing Time 0.023 seconds

Numerical Analysis of the Filling Stage in Insert Injection Molding of Microfluidic Chip with Metal Electrodes (금속 전극을 포함한 미세유체 칩의 인서트 사출성형 충전 공정 해석)

  • Lee, Bong-Kee;Na, Seung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.969-976
    • /
    • 2015
  • In the present study, a numerical investigation of an insert injection molding process was carried out for the development of thermoplastic microfluidic chip plates with metal electrodes. Insert injection molding technology enables efficient realization of a plastic-metal hybrid structure and various efforts have been undertaken to produce novel components in several application fields. The microfluidic chip with metal inserts was proposed as a representative example and its molding process was analyzed. The important characteristics of the filling stage, such as the effects of filling time and thickness of the part cavity, were characterized. Furthermore, the detailed distributions of pressure and temperature at the end of the filling stage were investigated, revealing the significance of metal insert temperature.

Metal Injection Molding Analysis of WGV Head in a Turbo Charger of Gasoline Automobile (가솔린 자동차 터보차져용 WGV Head의 금속 분말 사출성형 해석)

  • Park, Bo-Gyu;Park, Si-Woo;Park, Dae-Kyu;Kim, Sang-Yoon;Jeong, Jae-Ok;Jang, Jong-Kwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.388-395
    • /
    • 2015
  • The waste gate valve (WGV) for gasoline vehicles operate in a harsh high-temperature environment. Hence, WGVs are typically made of Inconel 713C, which is a type of Ni-based superalloy. Recently, the metal injection molding (MIM) process has attracted considerable attention for parts used under high-temperature conditions. In this study, an MIM analysis for the head and other parts of the WGV is conducted using a commercial CAE program Moldflow. Further, optimal manufacturing conditions are determined by analyzing flow characteristics at various injection times and locations. Moreover, to improve the accuracy of the analysis results, we compare the actual temperature of the mold during injection processing with that observed through the analysis. As the results, metal injection patterns of analysis are well in accord with these of short shot test. And the temperature variations of analysis is also very similar with those of feedstock when metal injection molding.

Metal Injection Molding Analysis for Developing Embroidering Machine Rotary Hooks (자수기용 로터리 훅 개발을 위한 금속분말 사출성형해석)

  • Kim, Sang-Yoon;Park, Bo-Gyu;Jung, Jae-Ok;Cho, Kyu-Sang;Chung, Ilsup
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.160-168
    • /
    • 2018
  • Among the components of rotary hooks, a core component of an embroidery sewing system, a study was conducted to apply metal injection molding to the manufacture of a hook body and a housing that was very difficult to mechanical working. The correlation of feedstock, a mixture of binder and SCM 415 metal powder, and properties of the pressure-volume-temperature interrelationship, viscosity, specific heat, and thermal conductivity were measured. Injection molds for the hook body and the housing were developed through injection molding analysis using these properties and conducted injection tests. Optimal injection gate position and number, injection pressure, and injection time were obtained through a comparison of analysis results with the experiment results.

A Study of Outsell Molding Technology for Thin-walled Plastic Part (박판 플라스틱 부품의 Outsert Molding 기술에 대한 연구)

  • Lee, S.H;Ko, Y.B.;Lee, J.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • A work of thin-walled outsell injection molding technology for a plastic part of moldframe applicable in a display product was performed in the present study. The thin-walled plastic part is one of the core parts in the display product, which supports and protects a light guide plate and back light unit from external environmental conditions. It globally has the shape of rectangular and surrounds the light guide plate and back light unit for each class of inch, however, the cross section of the part is not clear to define the thickness. This causes the difficult problem of injection molding itself for the part. Moreover, a metal outsell part makes a difficult problem in injection molding over it. Because the mold temperature control of the parts are not uniform in thickness direction due to the metal part. A careful injection melding analysis and injection mold design from the analysis results have to be proceeded to obtain a production of precision moldframe. Therefore, optimization for injection molding process and analysis of warpage characteristics were studied. Consequently, it was possible from the presented virtual manufacturing process that the manufacturing of precision thin-walled outsell moldframe.

Design Regression for Identification of Optimal Components for Metal Powder Injection Molding

  • German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.211-212
    • /
    • 2006
  • Production components fabricated by metal powder injection molding are analyzed for features to identify the design window for this powder technology. This reverse approach lets the designer see where PIM has a high probability to succeed. The findings show that the most suitable components tend to be less than 25 mm in size and less than 10 g in mass, are slender, and have high complexity.

  • PDF

Numerical Study on the Behavior Characteristics of a Screw in Injection Molding Machine (사출기 스크류의 변형거동 특성에 관한 수치해석 연구)

  • 김청균;조승현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.30-37
    • /
    • 2002
  • Single flighted screw injection technology is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding. The temperature of polymer melts and injection pressure play a very important role in the injection molding machine. Thermal distortion and displacement of a screw by temperature difference and injection pressure difference ratio cause a friction and thermoelastic wear by metal-to-metal contact between the screw and the cylinder. In this paper we analyzed thermal distortions of a screw as functions of temperature distribution and pressure profiles by finite element analysis.

A Study on the Injection Molding Analysis of the Metal Powder Material (금속분말재료의 사출 성형해석에 관한 연구)

  • Ro, Chan-Seung;Park, Jong-Nam;Jung, Han-Byul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2017
  • In this study,we conducted an injection molding analysis of metal powder materials for the development of flanges, which are necessary adapters for optical communication. The metal powder injection molding process is a technique for producing an injection molded article having a complicated shape by mixing ceramic or stainless powder and binders. It is used to produce products which require complex processing technology or for which the productivity is low. The purpose of this study is to minimize the manufacturing processing of products which are manufactured through existing mechanical processing procedures. For the injection molding analysis, we mixed stainless STS316 metal powder with binders at a ratio of 6 to 4 to make molding materials consisting of granular pellets. Then, three-dimensional modeling and meshing were carried out to obtain the optimal injection molding analysis conditions(molding temperature, melting temperature, injection time, injection temperature, injection pressure, packing time and cooling time). As a result of the analysis, it was discovered that the inlet became available 13.29 seconds after the first injection. Also, as the flowing and packing in the melt through the sprue, runner and gate were stable, it is expected that good molds can be manufactured.

A Study on Contact Dynamic Characteristics of Screw and Barrels in Injection Molding Machine (사출기 스크류와 배럴의 접촉거동 특성에 대한 연구)

  • 최동열;고영배;조승현;김청균;주성규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.212-220
    • /
    • 2000
  • Single flighted screw extrusion is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding. The temperature of polymer melts and injection pressure play a very important role in the injection molding machine. Thermal distortion and displacement of screw by temperature difference and injection pressure difference cause adhesive wear by metal-to-metal contact. In this paper we analyze thermal distortion and stress of screw includes pressure and temperature distributions by finite element analysis to understand dynamic characteristics of screw.

  • PDF

Structural Analysis in Conjunction with Injection Molding Analysis for Electrical Power Plug (전자제품용 전원 플러그의 사출-구조 연계해석)

  • Park, H.P.;Choi, K.I.;Lee, Y.J.;Rhee, B.O.;Cha, B.S.;Hong, S.K.;Koo, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.271-274
    • /
    • 2007
  • Housing and insulation of electrical connectors are made of plastic resin by injection molding process. The metallic inner tube is easily deformed by high pressure during the injection process. In order to prevent deformation of the inner tube, it is desirable to simulate it by structural CAE analysis. However, it takes a long time to calculate the stress- of the part by commercially available injection molding CAE software with sufficient accuracy. In this study, structural analysis in conjunction with injection molding analysis is proposed to improve accuracy of the structural analysis. Pressure distribution on the inner tube is predicted by the injection molding CAE analysis, and then mapped onto the mesh of structural analysis by a mapping algorithm developed in this study. As a result reliable result is obtained in shorter time than the conventional method. The predicted deformation of the inner tube is compared with the actual part after experiment.

  • PDF

A Study on the Injection Molding Process for Manufacturing of Alternator Pulley (얼터네이터 풀리의 제조를 위한 사출성형공정에 관한 연구)

  • 민병현;김영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.159-165
    • /
    • 2002
  • So far, an alternator pulley has been formed by cold forging and casting with a metal due to the necessity of its high strength. Various advantages such as the light weight, the low cost, and the high productivity can be obtained by the injection molding process using engineering plastics. Engineering plastics have an excellent performance in the characteristics off strength vs. weight, a good forming ability and a productivity. The object of this study is to develop an alternator pulley, which has been made with a metal, using the injection molding process based on Taguchi methods. A sink mark is considered as a characteristic parameter to improve the quality. The FEM Simulation CAE tool, Moldflow, is used for the analysis of injection molding process.