• Title/Summary/Keyword: Metal incorporation

Search Result 105, Processing Time 0.027 seconds

Incorporation of Manganese Oxide Nanoparticles Into Polyaniline Hollow Nanospheres and Its Application to Supercapacitors

  • Kwon, Hyemin;Ryu, Ilhwan;Han, Jiyoung;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.295-295
    • /
    • 2013
  • Supercapacitors with higher energy and power density are attracting growing attention for their wide range of potential applications such as portable electronic equipments, hybrid vehicle and cellular devices. In various classes of materials for supercapacitors, the redox pseudocapacitive materials such as conducting polymers and metal oxides have been most widely studied recently. The nanostructuring of the electrode surface has also been focused on since it can provide large surface area and consequently easy diffusion of ions in the capacitors. Among the active materials, in this work, we have used polyaniline (PANi) and manganese oxide ($MnO_2$). PANi is one of the promising electrode and active materials due to its desirable properties such as high electrochemical activity, high doping level and stability. $MnO_2$ is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. In this work, we fabricated PANi hollow nanospheres by polymerizing aniline monomers on the polystyrene (PS) nanospheres and then dissolving the inner PS spheres. This nanostructuring of the PANi surface can provide large surface area and hence easy diffusion of electrolyte ions. We also incorporated $MnO_2$ nanoparticles into the PANi hollow nanospheres and investigated its electrochemical properties. It is expected that the combination of these two active materials with slightly different working potential windows show synergetic effects such as broader working potential range and enhanced specific capacitance.

  • PDF

Structural and Magnetic Properties of Cr-Zn Nanoferrites Synthesized by Chemical Co-Precipitation Method

  • Powar, Rohit R.;Phadtare, Varsha D.;Parale, Vinayak G.;Pathak, Sachin;Piste, Pravina B.;Zambare, Dnyandevo N.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.474-482
    • /
    • 2019
  • Chromium-doped zinc ferrite nanoparticles with the general formula CryZnFe2-yO4 (y = 0, 0.025, 0.05, 0.075, and 0.1) were synthesized by a surfactant-assisted chemical co-precipitation route using metal nitrate salt precursors. The phase purity and structural parameters were determined by powder X-ray diffraction. The concentration of Cr3+ doped into ZnFe2O4 (ZF) noticeably affected the crystallite size, which was in the range of 22 nm to 36 nm, and all samples showed a single cubic spinel structure without any secondary phase or impurities. The lattice parameter, X-ray density, and skeletal density increased with an increase in the Cr-doping concentration; on the other hand, a decreasing trend was observed for the particle size and porosity. The influence of Cr3+ substitution on ZF magnetic properties were studied under an applied field of 15 kOe. The overall results revealed that the incorporation of a small amount of Cr dopant changed the structural, electrical, and magnetic properties of ZF.

Electrical and Optical Characteristics of Isoelectronic Al-doped GaN Films

  • Lee, Jae-Hoon;Ko, Hyun-Min;Park, Jae-Hee;Hahm, Sung-Ho;Lee, Jung-Hee
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • The effects of the isoelectronic AI-doping of GaN grown by metal organic chemical vapor deposition were investigated for the first time using scanning electron microscopy (SEM), Hall measurements, photoluminescence (PL), and time-resolved PL. When a certain amount of Al was incorporated into the GaN films, the room temperature photoluminescence intensity of the films was approximately two orders larger than that of the undoped GaN. More importantly, the electron mobility significantly increased from 130 for the undoped sample to $500\textrm{cm}^2/Vs$ for the sample grown at a TMAl flow rate of $10{\mu}mol/min$, while the unintentional background concentration only increased slightly relative to the TMAl flow. The incorporation of Al as an isoelectronic dopant into GaN was easy during MOCVD growth and significantly improved the optical and electrical properties of the film. This was believed to result from a reduction in the dislocation-related non-radiative recombination centers or certain other defects due to the isoelectronic Al-doping.

  • PDF

Recent advances of aromatic C-F bond borylation and its application to positron emission tomography

  • Song, Dalnim;Lee, Sanghee;Lee, Byung Chul;Kim, Sang Eun;Lee, Eunsung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.2
    • /
    • pp.80-87
    • /
    • 2015
  • Carbon-fluorine (C-F) bonds have been found ubiquitously in pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science due to their unique properties such as thermal and oxidative stability and lipophilicity to improve bioavailability. For the past five years, there have been significant advances in F-18 fluorination of aromatic complex molecules combined with the development of late-stage fluorination reactions. More recently, direct incorporation of F-18 to fluorinated aromatic molecules via borylation of C-F bonds has been developed by Niwa and Hosoya. In this minireview, we will discuss the progress of C-F bondborylation of fluorinated arenes utilizing transition metal catalysts and the impact on the development of F-18 radiotracers for positron emission tomography (PET).

Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode

  • Kim, Jin Koo;Park, Gi Dae;Kang, Yun Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • Simple fabrication of a powdered Ge-reduced graphene oxide (Ge-rGO) composite via spray pyrolysis and reduction is introduced herein. Successful incorporation of the rGO nanosheets with Ge hindered the aggregation of Ge and conferred enhanced structural stability to the composite by alleviating the mechanical stress associated with drastic volume changes during repeated cycling. The Li-ion storage performance of Ge-rGO was compared with that of powdered Ge metal. The reversible discharge capacity of Ge-rGO at the $200^{th}$ cycle was $748mA\;h\;g^{-1}$ at a current density of $1.0A\;g^{-1}$ and Ge-rGO showed a capacity of $375mA\;h\;g^{-1}$ even at a high current density of $5.0A\;g^{-1}$. The excellent performance of Ge-rGO is attributed to the structural robustness, enhanced electrical conductivity, and formation of open channels between the rGO nanosheets, which facilitated electrolyte penetration for improved Li-ion diffusion.

Characterization of Cr-P-C/MoS2 composite plating electro-deposited from trivalent chromium

  • Park, Jong-Kyu;Seo, Sun-Kyo;Byoun, Young-Min;Lee, Chi-Hwan
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.445-449
    • /
    • 2018
  • Chromium plating is a common surface treatment technique extensively applied in industry due its excellent properties which include substantial hardness, abrasion resistance, corrosion resistance, surface color, and luster. In this study, the effect of $MoS_2$ particles of the composite coating was investigated. To improve the lubrication of mold, $Cr-P-C/MoS_2$ composite plating was studied by varying the $MoS_2$ content. The current efficiency of the composite plating incorporated $MoS_2$ particles was increased at $MoS_2$ contents of 0.5 and 1.0 g/l due to the incorporation of fine particles. On the other hand, when the content of $MoS_2$ is 1.0 g/l or more, the current efficiency is lowered due to an increase in impact on the cathode surface. In order to evaluate the mechanical properties of Scratch test were conducted. Scratch test confirmed the lubricity and abrasion resistance characteristics revealed that the composite plating with added $MoS_2$ had relatively low surface roughness and uniform surface modification to improve its properties.

Total value recovery in the copper smelting and refining operations

  • Kim Joe. Y.;Kong Bong S.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.590-597
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and $Dor\'{e}$ furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyro-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

Characteristics Evaluation of Radiation Shielding Materials Used Waste Glass and Chelate Resins (폐유리와 킬레이트 수지를 사용한 방사선 차폐재의 재료특성 평가)

  • Kim, Hyo-Jung;Jang, Jong-Min;Song, Young-Soon;Noh, Jae-Ho;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.56-64
    • /
    • 2019
  • Various approaches have been attempted to develop recycling technologies related to industrial waste resources containing metals. Among them, glass is not decomposed into microorganisms, so landfill is not suitable, and interest in the recycling of waste glass is increasing. In this paper, by incorporating chelate resin to suppress the elution of heavy metals in waste glass and using waste glass as a fine aggregate and we want to evaluate the strength, drying shrinkage, alkali-silica reaction and heavy metal leaching of shielded filler materials and to provide basic data for utilizing waste glass as an economical and environmentally friendly shielding filler. As a result of the test, it was found that the use of waste glass as a fine aggregate was effective in the development of strength, but the incorporation of chelate resin had an influence on the strength development. In addition, the addition of chelate resin was effective in improving drying shrinkage but it was found to affect the alkali - silica reaction. As a result of the heavy metal leaching test, the KSLP test method satisfies all the criteria for heavy metal leaching. However, in case of lead, the limit of US ANSI 67-2007a was exceeded and further study should be done.

Trend and Future Strategy of Ammonia Gas Recovery based on Adsorption from Livestock Fields (축산현장에서 발생된 암모니아 기체의 흡착기반 회수 동향 및 향후 전략)

  • Sangyeop Chae;Kwangmin Ryu;Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.45-53
    • /
    • 2023
  • This study discussed the trend and future strategy of adsorption technology R&D to effectively recover ammonia emitted from the livestock fields. A proper ammonia adsorbent should incorporate acidic or hydrogen bonding functional groups on the surface, as well as a high specific surface area and a good surface structure appropriate for ammonia adsorption. Activated carbon and minerals such as zeolite have widely been used as ammonia adsorbents, but their adsorption effects are generally low, so any improvement through surface modification should be necessary. For example, incorporation of metal chloride included in a porous adsorbent can promote ammonia adsorption effectiveness. Recently, new types of adsorbents such as MOFs (Metal-Organic Frameworks) and POPs (Porous Organic Polymers) have been developed and utilized. They have shown very high ammonia adsorption capacity because of adjustable and high specific surface area and porosity. In addition, Prussian Blue exhibited high ammonia adsorption and desorption performance and selectivity. This looks relatively advantageous in relation to the recovery of ammonia from livestock waste discharge. In the future, further research should be made to evaluate ammonia adsorption/desorption efficiency and purity using various adsorbents under conditions suitable for livestock sites. Also, effective pre- and/or post-treatment processes should be integrated to maximize ammonia recovery.

A Study on Filtration Efficiency of Several Dust Masks for Stainless Steel arc Welding fume (방진마스크의 Stainless steel arc 용접흄 여과효율에 관한 연구)

  • Song, Kyung-Seuk;Kwon, Yong-Shick;Han, Kuy-Tae;Chung, Kyu-Hyuck;Lee, Yong-Mook;Yu, Il-Je
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.42-47
    • /
    • 2001
  • The purpose of this study was to investigate for filtration efficiency of several dust masks, comparing with filtration efficiency certified by KOSHA(Korea Occupational Safety & Health Agency), and to require of the right use of protective respirators. Using a welding fume generator and chamber, several dust masks, which were widely used in the workplaces in korea, were tested for their filtering efficiency for stainless steel arc welding fume. The filtration efficiency testing system consisted of a welding fume generator, a chamber and a filtration unit. The filtration unit was made of a mask which was inserted into the sampling cassette and another sampling cassette, which contained mixed cellulose ester filter paper. These two cassettes were connected with tubing. Stainless steel arc welding fume generator was delivered into an chamber. The welding fume in the chamber was passed into the filtration unit with flow rate of 30 liter/min. The welding fume filtration efficiency was evaluated by gravimetric measurement. Metal concentrations in the welding fume before and after filtration were measured with inductive coupling plasma analyzer. Following results were obtained: Filtration efficiency of welding fume for common hygienic mask was 63.82% and the average efficiencies for A, B, C, D, E, F and G masks were 94.62%, 96.58%, 83.20%, 82.76%, 77.25%, 86.55% and 93.22%, respectively. Our results indicate that dust masks used widely in the welding workplaces in korea are not proper for protecting worker's health and then the use of fume mask should be required.

  • PDF