Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.1.07

Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode  

Kim, Jin Koo (Department of Materials Science and Engineering, Korea University)
Park, Gi Dae (Department of Materials Science and Engineering, Korea University)
Kang, Yun Chan (Department of Materials Science and Engineering, Korea University)
Publication Information
Abstract
Simple fabrication of a powdered Ge-reduced graphene oxide (Ge-rGO) composite via spray pyrolysis and reduction is introduced herein. Successful incorporation of the rGO nanosheets with Ge hindered the aggregation of Ge and conferred enhanced structural stability to the composite by alleviating the mechanical stress associated with drastic volume changes during repeated cycling. The Li-ion storage performance of Ge-rGO was compared with that of powdered Ge metal. The reversible discharge capacity of Ge-rGO at the $200^{th}$ cycle was $748mA\;h\;g^{-1}$ at a current density of $1.0A\;g^{-1}$ and Ge-rGO showed a capacity of $375mA\;h\;g^{-1}$ even at a high current density of $5.0A\;g^{-1}$. The excellent performance of Ge-rGO is attributed to the structural robustness, enhanced electrical conductivity, and formation of open channels between the rGO nanosheets, which facilitated electrolyte penetration for improved Li-ion diffusion.
Keywords
Lithium ion batteries; Germanium; Graphene; Carbon composite; Spray pyrolysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 X. Li, J. Liang, Z. Hou, W. Zhang, Y. Wang, Y. Zhu, and Y. Qian, "The Design of a High-Energy Li-Ion Battery Using Germanium-Based Anode and $LiCoO_2$ Cathode," J. Power Sources, 293 868-75 (2015).   DOI
2 C. Zhang, Z. Lin, Z. Yang, D. Xiao, P. Hu, H. Xu, Y. Duan, S. Pang, L. Gu, and G. Cui, "Hierarchically Designed Germanium Microcubes with High Initial Coulombic Efficiency toward Highly Reversible Lithium Storage," Chem. Mater., 27 [6] 2189-94 (2015).   DOI
3 E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, and I. Honma, "Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries," Nano Lett., 8 [8] 2277-82 (2008).   DOI
4 S. Jin, N. Li, H. Cui, and C. Wang, "Growth of the Vertically Aligned Graphene@Amorphous $GeO_x$ Sandwich Nanoflakes and Excellent Li Storage Properties," Nano Energy, 2 [6] 1128-36 (2013).   DOI
5 T. Kennedy, E. Mullane, H. Geaney, M. Osiak, C. O'Dwyer, and K. M. Ryan, "High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles through in situ Formation of a Continuous Porous Network," Nano Lett., 14 [2] 716-23 (2014).   DOI
6 D.-J. Xue, S. Xin, Y. Yan, K.-C. Jiang, Y.-X. Yin, Y.-G. Guo, and L.-J. Wan, "Improving the Electrode Performance of Ge through Ge@C Core-Shell Nanoparticles and Graphene Networks," J. Am. Chem. Soc., 134 [5] 2512-15 (2012).   DOI
7 M. H. Park, Y. Cho, K. Kim, J. Kim, M. Liu, and J. Cho, "Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries," Angew. Chem. Int. Ed., 50 [41] 9647-50 (2011).   DOI
8 D. T. Ngo, R. S. Kalubarme, H. T. T. Le, J. G. Fisher, C.-N. Park, I.-D. Kim, and C.-J. Park, "Carbon-Interconnected Ge Nanocrystals as an Anode with Ultra-Long-Term Cyclability for Lithium Ion Batteries," Adv. Funct. Mater., 24 [33] 5291-98 (2014).   DOI
9 J. D. Ocon, J. K. Lee, and J. Lee, "High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries," Appl. Chem. Eng., 25 [1] 1-13 (2014).   DOI
10 K. H. Seng, M. H. Park, Z. P. Guo, H. K. Liu, and J. Cho, "Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery," Angew. Chem. Int. Ed., 124 [23] 5755-59 (2012).   DOI
11 X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon, and J. Wu, "Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review," Adv. Energy Mater., 4 [1] 1300882 (2014).   DOI
12 S. Fang, L. Shen, H. Zheng, and X. Zhang, "Ge-Graphene-Carbon Nanotube Composite Anode for High Performance Lithium-Ion Batteries," J. Mater. Chem. A, 3 [4] 1498-503 (2015).   DOI
13 C. Wang, J. Ju, Y. Yang, Y. Tang, J. Lin, Z. Shi, R. P. S. Han, and F. Huang, "In situ Grown Graphene-Encapsulated Germanium Nanowires for Superior Lithium-Ion Storage Properties," J. Mater. Chem. A, 1 [31] 8897-902 (2013).   DOI
14 J. K. Kim, G. D. Park, J. H. Kim, J. H. Kim, and Y. C. Kang, "Electrochemical Properties of Amorphous $GeO_x$-C Composite Microspheres Prepared by a One-Pot Spray Pyrolysis Process," Ceram. Int., 43 [7] 5534-40 (2017).   DOI
15 Y. J. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. I. Cho, F. Shojaei, and H. S. Kang, "Tetragonal Phase Germanium Nanocrystals in Lithium Ion Batteries," ACS Nano, 7 [10] 9075-84 (2013).
16 J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett, and S. Maldonado, "Template-Free Preparation of Crystalline Ge Nanowire Film Electrodes via an Electrochemical Liquid-Liquid-Solid Process in Water at Ambient Pressure and Temperature for Energy Storage," Nano Lett., 12 [9] 4617-23 (2012).   DOI
17 J.-G. Ren, Q.-H. Wu, H. Tang, G. Hong, W. Zhang, and S.-T. Lee, "Germanium-Graphene Composite Anode for High-Energy Lithium Batteries with Long Cycle Life," J. Mater. Chem. A, 1 [5] 1821-26 (2013).   DOI
18 J. Cheng and J. Du, "Facile Synthesis of Germanium-Graphene Nanocomposites and Their Application as Anode Materials for Lithium Ion Batteries," CrystEngComm, 14 [2] 397-400 (2012).   DOI
19 C. Gao, N. D. Kim, R. Villegas Salvatierra, S.-K. Lee, L. Li, Y. Li, J. Sha, G. A. L. Silva, H. Fei, E. Xie, and J. M. Tour, "Germanium on Seamless Graphene Carbon Nanotube Hybrids for Lithium Ion Anodes," Carbon, 123 433-39 (2017).   DOI
20 Y. Xu, X. Zhu, X. Zhou, X. Liu, Y. Liu, Z. Dai, and J. Bao, "Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries," J. Phys. Chem. C, 118 [49] 28502-08 (2014).   DOI
21 L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, "A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles," J. Power Sources, 226 272-88 (2013).   DOI
22 K. Lee, S. Y. Shin, and Y. S. Yoon, "$Fe_3O_4 Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries," J. Korean Ceram. Soc., 53 [3] 376-80 (2016).   DOI
23 X. Gao, W. Luo, C. Zhong, D. Wexler, S. L. Chou, H. K. Liu, Z. Shi, G. Chen, K. Ozawa, and J. Z. Wang, "Novel Germanium/Polypyrrole Composite for High Power Lithium-Ion Batteries," Sci. Rep., 4 6095 (2014).   DOI
24 S. Wu, C. Han, J. Iocozzia, M. Lu, R. Ge, R. Xu, and Z. Lin, "Germanium-Based Nanomaterials for Rechargeable Batteries," Angew. Chem. Int. Ed., 55 [28] 7898-922 (2016).   DOI
25 W. He, H. Tian, X. Wang, F. Xin, and W. Han, "Three-Dimensional Interconnected Network $GeO_x$/Multi-Walled CNT Composite Spheres as High-Performance Anodes for Lithium Ion Batteries," J. Mater. Chem. A, 3 [38] 19393-401 (2015).   DOI
26 K. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries," Science, 311 [5763] 977-80 (2006).   DOI
27 B. Kang and G. Ceder, "Battery Materials for Ultrafast Charging and Discharging," Nature, 458 190-93 (2009).   DOI
28 L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, "Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries," Energy Environ. Sci., 4 [8] 2682-99 (2011).   DOI
29 S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries," J. Power Sources, 257 421-43 (2014).   DOI
30 L. Wang, K. Bao, Z. Lou, G. Liang, and Q. Zhou, "Chemical Synthesis of Germanium Nanoparticles with Uniform Size as Anode Materials for Lithium Ion Batteries," Dalt. Trans., 45 [7] 2814-17 (2016).   DOI
31 C. K. Chan, X. F. Zhang, and Y. Cui, "High Capacity Li-Ion Battery Anodes Using Ge Nanowires," Nano Lett., 8 [1] 307-9 (2008).   DOI
32 G.-H. Lee, H.-W. Shim, and D.-W. Kim, "Superior Long-Life and High-Rate Ge Nanoarrays Anchored on Cu/C Nanowire Frameworks for Li-Ion Battery Electrodes," Nano Energy, 13 218-25 (2015).   DOI
33 H. S. Im, Y. R. Lim, Y. J. Cho, J. Park, E. H. Cha, and H. S. Kang, "Germanium and Tin Selenide Nanocrystals for High-Capacity Lithium Ion Batteries: Comparative Phase Conversion of Germanium and Tin," J. Phys. Chem. C, 118 [38] 21884-88 (2014).   DOI
34 S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, and Z. Lin, "Graphene-Containing Nanomaterials for Lithium- Ion Batteries," Adv. Energy Mater., 5 [21] 1500400 (2015).
35 S. H. Choi, K. Y. Jung, and Y. C. Kang, "Amorphous $GeO_x$-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries," ACS Appl. Mater. Interfaces, 7 [25] 13952-59 (2015).   DOI
36 Yoon, C.-M. Park, and H.-J. Sohn, "Electrochemical Characterizations of Germanium and Carbon-Coated Germanium Composite Anode for Lithium-Ion Batteries," Electrochem. Solid-State Lett., 11 [4] A42-5 (2008).   DOI
37 D. Li, C. Feng, H. Liu, and Z. Guo, "Hollow Carbon Spheres with Encapsulated Germanium as an Anode Material for Lithium Ion Batteries," J. Mater. Chem. A, 3 [3] 978-81 (2015).   DOI
38 D. Li, K. H. Seng, D. Shi, Z. Chen, H. K. Liu, and Z. Guo, "A Unique Sandwich-Structured C/Ge/Graphene Nanocomposite as an Anode Material for High Power Lithium Ion Batteries," J. Mater. Chem. A, 1 [45] 14115-21 (2013).   DOI
39 J. K. Kim, J. H. Kim, and Y. C. Kang, "Electrochemical Properties of Multicomponent Oxide and Selenide Microspheres Containing Co and Mo Components with Several Tens of Vacant Nanorooms Synthesized by Spray Pyrolysis," Chem. Eng. J., 333 665-77 (2018).   DOI
40 A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins, and B. A. Korgel, "Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries," J. Phys. Chem. C, 116 [22] 11917-23 (2012).   DOI