• 제목/요약/키워드: Metal fuel

검색결과 855건 처리시간 0.022초

바이오가스 연료기반 연료전지발전 기술동향 (Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel)

  • 이종규;전재호;이종연
    • 신재생에너지
    • /
    • 제4권3호
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

경수로 사용후핵연료 건식저장을 위한 진공건조공정 개발 (Development of the Vacuum Drying Process for the PWR Spent Nuclear Fuel Dry Storage)

  • 백창열;조천형
    • 방사성폐기물학회지
    • /
    • 제14권4호
    • /
    • pp.435-443
    • /
    • 2016
  • 본 논문은 국내 원전의 습식저장조에 저장 중인 경수로형 사용후핵연료를 금속겸용용기를 이용해 건식으로 운영하기 위한 운영공정을 개발하는 것이다. 국내 경수로형 원전의 사용후핵연료는 1990년대 초부터 습식으로 소내에서 운반을 한 경험은 많으나 건식으로 운전한 경험은 전혀 없는 실정이다. 이에 따라 금속겸용용기를 운영할 수 있는 세부 운영공정을 개발하였으며 주요 운영공정에서 금속겸용용기의 주요 구성품 및 사용후핵연료의 안전성이 유지됨을 확인하였다. 단기운영공정은 총 21시간 내에 이루어지도록 절차를 수립하였고 단계별로 허용운전 시간(15시간 습식공정, 3시간 배수공정, 그리고 3시간 진공공정)도 제시하였다.

리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향 (Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells)

  • 윤홍관;김다희;김천중;김용진;민지호;정남기
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

고체산화물 연료전지를 위한 물성치 모델 및 단전지 해석 (Physical Property Models and Single Cells Analysis for Solid Oxide Fuel Cell)

  • 박준근;김선영;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.379-381
    • /
    • 2009
  • The simulation model for metal-supported Solid Oxide Fuel Cell(SOFC) is developed in this study. Open circuit voltage is calculated using Nernst equation and Gibbs free energy is required by thermodynamic. The exchange current densities are compared with experimental results since exchange current density is most effective factor for the activation loss. Liu's study is used for the exchange current density of cathode, BSCF, and Koide's result is applied for the exchange current density of anode, Ni/YSZ. For the ohmic loss, ionic conductivity of YSZ is described from Kilner's mode and the data are compared with Wanzenberg's experimental data. Diffusivity is an important factor for the mass transfer through the porous medium. Both binary diffusion and Knudsen diffusion are considered as the diffusion mechanism. For validation, simulation results at this work are compared with our experimental results.

  • PDF

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • 제6권2호
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

Realization of a Metalized Gel Fuel Ramjet

  • Natan, Benveniste
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.135-140
    • /
    • 2010
  • The high specific impulse of the ramjet engine, combined with the ability of a gel to carry metal particles, make the Gel Fuel Ramjet a most adequate solution for a mid-high range sustainer. The goal of the present study is to verify experimentally the feasibility of such a concept. A test facility and a lab-scale motor have been designed and built to investigate atomization, ignition and firing processes of a gel hydrocarbon fuel, with and without metal additives, as well as to check the ramjet operation as a whole. The present paper presents the experimental system in detail as well as qualitative results of a few firing tests.

  • PDF

Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)

  • Ishihara, Tatsumi
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.469-477
    • /
    • 2016
  • The application of nanomaterials for electrodes of intermediate temperature solid oxide fuel cells (SOFC) is introduced. In conventional SOFCs, the operating temperature is higher than 1073 K, and so application of nanomaterials is not suitable because of the high degradation rate that results from sintering, aggregation, or reactions. However, by allowing a decrease of the operating temperature, nanomaterials are attracting much interest. In this review, nanocomposite films with columnar morphology, called double columnar or vertically aligned nanocomposites and prepared by pulsed laser ablation method, are introduced. For anodes, metal nano particles prepared by exsolution from perovskite lattice are also applied. By using dissolution and exsolution into and from the perovskite matrix, performed by changing $P_{O2}$ in the gas phase at each interval, recovery of the power density can be achieved by keeping the metal particle size small. Therefore, it is expected that the application of nanomaterials will become more popular in future SOFC development.

Optimal Metal Dose of Alternative Cathode Catalyst Considering Organic Substances in Single Chamber Microbial Fuel Cells

  • Nam, Joo-Youn;Moon, Chungman;Jeong, Emma;Lee, Won-Tae;Shin, Hang-Sik;Kim, Hyun-Woo
    • Environmental Engineering Research
    • /
    • 제18권3호
    • /
    • pp.145-150
    • /
    • 2013
  • Optimal preparation guidelines of a cathode catalyst layer by non-precious metal catalysts were evaluated based on electrochemical performance in single-chamber microbial fuel cells (MFCs). Experiments for catalyst loading rate revealed that iron(II) phthalocyanine (FePc) can be a promising alternative, comparable to platinum (Pt) and cobalt tetramethoxyphenylporphyrin (CoTMPP), including effects of substrate concentration. Results showed that using an optimal FePc loading of $1mg/cm^2$ was equivalent to a Pt loading of $0.35mg/cm^2$ on the basis of maximum power density. Given higher loading rates or substrate concentrations, FePc proved to be a better alternative for Pt than CoTMPP. Under the optimal loading rate, it was further revealed that 40 wt% of FePc to carbon support allowed for the best power generation. These results suggest that proper control of the non-precious metal catalyst layer and substrate concentration are highly interrelated, and reveal how those combinations promote the economic power generation of single-chamber MFCs.

플라즈마를 이용한 LPG연료 개질 특성연구 (Characteristics of LPG Fuel Reforming using Plasma Technology)

  • 김창업
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, characteristics of reforming process of automotive liquefied petroleum gas (LPG) fuel using plasma reactor are investigated. Because plasma reformer technology has advantages of a fast start-up and wide fuel/oxidizer ratio of operation, and reactor size is smaller and more simple compared to typical combustor and catalytic reactor, plasma reforming is suitable to the on-board vehicle reformer. To evaluate the characteristics of the reforming process, parametric effect of $O_2/C$ ratios, reactant flow rate and metal form on the process were investigated. In the test of varying $O_2/C$ ratio from partial oxidation to stoichiometry combustion, conversion of LPG was increased but selectivity of $H_2$ decreased. The optimum condition of $O_2/C$ ratio for the highest $H_2$ yield was determined to be around 1.0 for 20~50 lpm, and 1.35 for 100 lpm. Specific energy density (SED) was major factor in reforming process and higher SED leads to higher $H_2$ yield. And metal form in the reformer increased $H_2$ yield of about 34 % as compared to the case of no metal form. The result can be a guide to map optimal condition of reforming process.

전해환원공정 관련 후처리공정 - 금속전환체 Smelting 및 용융염 고화 (Post Process Associated with the Electrochemical Reduction Process - Smelting of a Metal Product and Solidification of a Molten Salt)

  • 허진목;정명수;이원경;조수행;서중석;박성원
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.278-284
    • /
    • 2004
  • 전해환원공정에서 발생하는 금속전환체와 용융염을 각각 smelting하고 고화시키는 공정을 개발하였다. 진공조건에서 다단계 가열에 의하여 마그네시아 용기에 담긴 금속전환체를 잔류 용융염과 분리하고 용융시켜 금속 잉곳을 제조하는 운전방법을 제시하는 한편, 금속전환체의 분석을 수행하였다. 전해환원 공정에서 감압이송된 용융염의 경우에는 이송과 계량에 적합하게 이중 용기와 염밸브를 사용하여 일정 형상과 크기로 고화하는 신개념을 도출하였다. 본 연구의 결과는 한국원자력연구소 Advanced Spent Fuel Conditioning Process의 hot cell 실증시스템 설계에 적용되었다.

  • PDF