• Title/Summary/Keyword: Metal films

Search Result 1,682, Processing Time 0.027 seconds

Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn) (GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과)

  • Kim, Hyeon-Beom;Kim, Dong-Ho;Lee, Gun-Hwan;Kim, Kang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.3
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

Fabrication and characterization of metal oxide films on textured metal substrates (배향화된 금속기관에서 산화물막의 제조와 분석)

  • Choi, Eun-Chul;Hong, In-Ki;Lee, Chang-Ho;Sung, Tae-Hyun;No, Kwang-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.111-120
    • /
    • 2000
  • Recently, metal oxide films such as MgO or ZrO$_2$ have been studied as buffer layers to fabricate the superconductor with preferred orientation and as diffusion barriers to prevent the reaction between superconductor and metal substrate. In this research, we focused fabrication and characterization of MgO and ZrO$_2$ films on textured metal substrates. We fabricated MgO and ZrO$_2$ films on the Ni metal sheets by sol-gel dipping method. The microstrcures of the films were investigated by SEM and AES analyses. The films were coated with different cycles and dryed at 400$^{\circ}$C and 500$^{\circ}$C . The final films were heat-treated at 700$^{\circ}$C, 800$^{\circ}$C, and 1000$^{\circ}$C, in air atmosphere. We investigated the alignment of MgO and ZrO$_2$ films on Ni metal sheets by XRD and pole figure. The grain growth of metal oxide films was improved by the increase of the drying temperature and annealing temperature. The grain growth was increased with the annealing temperature. The alignment of metal oxide films depended on the thickness.

  • PDF

Design and Synthesis of Multi Functional Noble Metal Based Ternary Nitride Thin Film Resistors

  • Kwack, Won-Sub;Choi, Hyun-Jin;Lee, Woo-Jae;Jang, Seung-Il;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.93-93
    • /
    • 2013
  • In recent years, multifunctional ternary nitride thin films have received extenstive attention due to its versatility in many applications. In particular, noble metal based ternary nitride thin films showed a promising properties in the application of Multifunctional heating resistor films because its good electrical properties and excellent resistance against oxidation and corrosion. In this study, we prepared multifunctional noble metal based ternary nitride thin films by atomic layer deposition (ALD) and plasma-enhanced ALD (PEALD) method. ALD and PEALD techniques were used due to their inherent merits such as a precise composition control and large area uniformity, which is very attractive for preparing multicomponent thin films on large area substrate. Here, we will demonstrate the design concept of multifunctional noble metal based ternary thin films. And, the relationship between microstructural evolution and electrical resistivity in noble metal based ternary thin films will be systemically presented. The useful properties of noble metal based ternary thin films including anti-corrosion and anti-oxidation will be discussed in terms of hybrid functionality.

  • PDF

An Analysis of Tribological Properties of Metal Interlayered DLC Films Prepared by PECVD Method (PECVD로 증착된 금속층을 포함하는 DLC 박막의 기계적 특성 분석)

  • Jeon, Young-Sook;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.631-635
    • /
    • 2006
  • The properties of metal interlayered DLC films between the Si substrate and the DLC films were studied. DC magnetron sputtering method has been used to deposit intermediate layers of metals. And RF-PECVD method has been employed to synthesize DLC onto substrates of the silicon and metal layers. After we used metal Inter-layers, such as chromium, nickel, titanium and we studied tribological properties of the DLC films. The thickness of films were observed by field emission scanning electron microscope (FE-SEM). Also the surface morphology of the films were observed by an atomic force microscope (AFM). The crystallographic properties of the films were analyzed with X-ray diffraction (XRD), the friction coefficients were investigated by AFM in friction force microscope (FFM) mode. Tribological performances of the films were estimated by nano-indenter, stress tester measurement.

Metal-insulator Transition in Low Dimensional $La_{0.75}Sr_{0.25}VO_3$ Thin Films

  • Huynh, Sa Hoang;Dao, Tran M.;Mondal, Partha S.;Takamura, Y.;Arenholz, E.;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.1-19.1
    • /
    • 2011
  • We report on the metal-insulator transition that occurs as a function of film thickness in ultrathin $La_{0.75}Sr_{0.25}VO_3$ films. The metal-insulator transition displays a critical thickness of 5 unit cell. Above the critical thickness, metallic films exhibit a temperature driven metal-insulator transition with weak localization behavior. With decreasing film thickness, oxygen octahedron rotation in the films increases, causing enhanced electron-electron correlation. The electron-electron correlations in ultrathin films induce the transition from metal to insulator in addition to Anderson localization.

  • PDF

Preparation and Oxygen Binding Properties of Ultra-Thin Polymer Films Containing Cobalt(II) meso-Tetraphenylporphyrin via Plasma Polymerization

  • Choe, Youngson
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.273-277
    • /
    • 2002
  • Ultra-thin polymer films containing cobalt(II) meso-tetraphenylporphyrin(CoTPP) have been prepared by vacuum codeposition of the metal complex and trans-2-butene as an organic monomer using an inductively coupled RF glow discharge operating at 7-9 Watts. The polymer films were characterized by sorption measurements. Sorption data obtained for polymer films containing CoTPP indicate that the CoTPP molecules are capable of reversibly binding oxygen molecules. It was found that the adjacent CoTPP molecules in the aggregated metal complex phase could irreversibly share the oxygen molecules. A dispersion of the metal complex molecules in the polymer matrix was made to maintain the reversible reactivity of the metal complex molecules with oxygen in the polymer films via vacuum evaporation process. The Henry mode solubility constant, the Langmuir mode capacity constant, the amount of binding oxygen, and the dissociation equilibrium in the dual mode sorption theory were discussed.

Thin Metal Meshes for Touch Screen Panel Prepared by Photolithography (포토리소그래피 공정으로 제작된 터치스크린패널용 금속메시)

  • Kim, Seo-Han;Song, Pung-Keun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.575-579
    • /
    • 2016
  • The metal mesh films with thickness of 1.0, 1.5, $2.0{\mu}m$ were prepared by photolithography using Ag, Al, and Cu metals. Every metal films were showed C(111) preferred orientation and Ag showed the lowest resistivity and followed by Al and Cu. The transmittance of almost films were higher than 90%. But, the Ag film with thickness of $2.0{\mu}m$ was delaminated during photolithography process due to low adhesion. So, Cu and Ti metal films were introduced under Ag film to improve adhesion property. The Cu film showed higher adhesion properties compared to Ti film. Furthermore, the Ti films that deposited on Ag film showed higher acid resistance.

Study on the Development of Finishing Design Methods for Building Structures Using the Metal Films (금속피막에 의한 건축 마감 의장 기법 개발에 관한 연구)

  • Lim, Ji-Taek;Jung, Hwa-Rang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.183-189
    • /
    • 2018
  • In this study, the bond strength between concrete and metal films was investigate according to changing water content ratio of substrate concrete by pull-out test in order to develop the new finishing design methods for building structures using the metal films. The following conclusions were obtained as a result of the studies. It was find that the colour of metal did not change before and after the metal spraying. Also, the water content ratio of substrate concrete must be controlled under 10% weight to confirm the standard bond strength of finishing material to concrete. 2.5 MPa. To enhance the bond strength between concrete and metal films, it is very effective to strengthen the concrete surface using the agent which strengthen the concrete surface and seal the pore of metal film by the sealing agents. Therefore, the control of concrete surface treatment and water content ratio are necessary to secure the bond strength of metal films.

Characteristics of Electrical Conduction in LB Ultra Thin Films (LB 초박막의 전기전도특성(I))

  • 이원재;최명규;권영수;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.74-77
    • /
    • 1990
  • In this paper, we study the electrical conduction mechanism in Langmuir-Boldgett(LB) ultra thin films. The LB device has a metal/Lb films/metal sandwich structure, where metal is electrode. In our experiments, the temperature does not depend on the current at below 0$^{\circ}C$. This phenomena show that the electrical conduction current is a tunnel current inherent to LB ultra thin films.

Gas Permeability of Polymeric LB Films Containing Imidazole-Metal Ion Complexes (이미다졸-금속 이온 착체를 포함하는 고분자 LB막의 기체 투과성)

  • 김병주;이범종
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.453-458
    • /
    • 2000
  • The permeability of oxygen and nitrogen was investigated from the polymeric LB films containing imidazole-metal ion complexes and compared with its corresponding cast films on porous membrane filters. The amphiphilic polymer, poly(N- (2-(4-imidazolyl)ethyl)-maleimide-alt-1-octadecene) (IM-O), was synthesized by reaction of poly(maleic anhydride-alt-1-octadecene) with histamine. The IM-O nonolayer showed high stability on Fe (III) ion-containing subphase. The molecular structure in the LB films was investigated by means of FT-IR spectroscopy. The metal ion concentration incorporated into the LB films was determined by means of XPS measurements. The mechanical stability and uniformity of the LB films on porous substrates were indirectly evidenced by SEM observation. The LB and cast films showed more or less higher selectivity toward nitrogen, and high permeability was found to both the oxygen and nitrogen.

  • PDF