• Title/Summary/Keyword: Metal ferrite

Search Result 226, Processing Time 0.029 seconds

Microstructural Changes on Weld Heat Input in $60kg/mm^2$ Quenched and Tempered High Strength Steel ($60kg/mm^2$급 조질고장력강의 용접입열량에 따른 미세조직변화)

  • 김은석;정인상;박경채
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.79-90
    • /
    • 1993
  • Shielded metal arc welding, one-ploe and two-pole submerged arc welding were accomplished to investigate microstructure changes on phase transformation behavior in $60kg/mm^2$ quenched and tempered high strength steel. Microstructures were examined by optical micrograph and TEM. In shielded metal arc welding (oxygen 250ppm), the inclusions were small size (0.3-0.5$\mu\textrm{m}$)and small in number. In submerged arc welding (oxygen 430-529ppm), the inclusions were larger(0.7-2$\mu\textrm{m}$) than that of shielded metal arc welding and large in number. Microstructure mainly depends on number and distribution of inclusions in fusion zone of weld metal. It was noticed that a limited number of inclusions favors the formation of acicular ferrite.

  • PDF

Effect of Flux Composition on Weld Metal Toughness and Workability in Submerged Aye Welding with 60kgf/$\textrm{mm}^2$ Grade C-Mo Type Wires (60kgf/$\textrm{mm}^2$급 C-MO계 와이어를 사용한 서브머지드 아크 용접금속 인성 및 작업성에 미치는 플럭스 조성의 영향)

  • 방국수;안영호
    • Journal of Welding and Joining
    • /
    • v.14 no.6
    • /
    • pp.93-100
    • /
    • 1996
  • Effect of a flux composition on weld metal toughness in submerged arc welding with 60kgf/$\textrm{mm}^2$ grade C-Mo type wires was investigated and interpreted in terms of weld metal microstructure and hardenability. Flux workability was also studied by characterizing a weld bead profile. Compared to other weld metals, .weld metal used alumina basic flux with nickel showed lowest oxygen content, highest hardenability and the most acicular ferrite. The highest impact toughness of that weld metal, however, was attributed to the tough matrix due to the nickel rather than to the larger amount of acicular ferrite. Manganese silicate flux had better workability than alumina basic flux, showing broader welding conditions resulting in a depth-to-width ratio of 0.5. The composition of oxides in the weld metal was dependent on the flux composition, showing MnO-SiO$_2$-TiO in manganese silicate flux and MnO-SiO$_2$-Al$_2$O$_3$-TiO in alumina basic flux. MnO-SiO$_2$composition in both oxides was similar to a tephroite.

  • PDF

Effect of Coating Thickness on Microstructures and Tensile Properties in Yb:YAG Disk Laser Welds of Al-Si Coated Boron Steel (Al-Si 용융 도금된 보론강의 Yb:YAG 디스크 레이저 용접부의 미세조직과 인장성질에 미치는 도금두께의 영향)

  • Cao, Wei-Ye;Kong, Jong-Pan;Ahn, Yong-Nam;Kim, Cheol-Hee;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.66-75
    • /
    • 2013
  • In this study, the effect of coating thickness($20{\mu}m$ and $30{\mu}m$) on microstructure and tensile properties in Yb:YAG disk laser welds of Al-Si-coated boron steel (1.2mmt) was investigated. In the case of as welds, the quantity of ferrite was found to be higher in base metal than that in HAZ (Heat Affected Zone) and fusion zone, indicating, fracture occurrs in base metal, and the fracture position is unrelated to the coating thickness. Furthermore, yield strength, tensile strength of base metal and welded specimens showed similar behavior whereas elongation was decreased. On the other hand, base metal and HAZ showed existence of martensite after heat treatment, the fusion zone indicated the presence of full ferrite or austenite and ferrite during heat treatment ($900^{\circ}C$, 5min), After water cooling, austenite was transformed to martensite, and the quantity of ferrite in fusion zone was higher as compared with in base metal, resulting in sharply decrease of yield strength, tensile strength and elongation, which leads to fracture occured at fusion zone. In particular, results showed that because the concentration of Al was higher in 30um coating layer specimen than that of 20um coating specimen, after heat treatment, producing a higher quantity of ferrite was higher after heat treatment in the fusion zone; howevers, it leads to a lower tensile property.

Preparation of High Permeability Mn-Zn Ferrites by the Wet Method (습식법에 의한 고투자율 Mn-Zn Ferrite의 제조에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.55-61
    • /
    • 1994
  • Mn-Zn ferrite powder was obtained by wet method that was to be coprecipitated the metal ions of Fe2+, Mn2+ and Zn2+ with alkali solution. The target composition of the ferrite powder was 52 mol% Fe2O3, 24 mol% MnO, and 24 mol% ZnO, that was based on the region of high permeability. And the other ferrite powder was prepared by the dry method that was to be mixed the metal oxides as the above chemical composition. The wet method was compared with dry method for the powder properties and the electromagnetic characteristics of sintered cores. The synthesized powder by wet method was smaller particle size, narrower particle distribution, and higher purity than that of dry method. The initial permeability of sintered sample prepared by the wet method was 14000~28000, on the other side, 9000~15500 in case of the dry method.

  • PDF

Liquid Phase Deposition of Transition Metal Ferrite Thin Films: Synthesis and Magnetic Properties

  • Caruntu Gabriel;O'Connor Charles J.
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.703-709
    • /
    • 2006
  • We report on the synthesis of highly uniform, single phase zinc and cobalt thin films prepared by the Liquid Phase Deposition (LPD) method. X-Ray diffraction, TGA and EDX measurements support the assumption that the as deposited films are constituted by a mixture of crystallized FeOOH and amorphous M(OH)$_2$ (M=Co, Zn) which is converted upon heat treatment in air at 600?C into the corresponding zinc ferrites. The films with adjustable chemical compositions are identified with a crystal structure as spinel-type and present a spherical or rod-like microstructure, depending on the both the nature and concentration of the divalent transition metal ions. Zinc ferrite thin films present a superparamagnetic behavior above blocking temperatures which decrease with increasing the Zn content and are ferromagnetic at 5 K with coercivities ranging between 797.8 and 948.5 Oe, whereas the cobalt ferrite films are ferromagnetic at room temperature with magnetic characteristics strongly dependent on the chemical composition.

Partial Reduction and Water Splitting Characteristics of Metal Substituted Ferrite Mediums for Thermochemical Hydrogen Production (열화학 수소 제조를 위한 금속 치환 페라이트 매체의 부분 환원 및 물 분해 특성)

  • Lee, Dong-Hee;Kim, Hong-Soon;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kyung-Soo;Kim, Young-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.356-364
    • /
    • 2007
  • The partial reduction and water splitting properties of metal substituted ferrite mediums for two-step thermochemical hydrogen production, were carried out by TPR/O(Temperature programmed reduction/oxidation) method at a temperature of below 1173 K and under atmospheric pressure. $ZrO_2$ was added to the ferrite as a binder to prevent the sintering. As the results, the reactivity of the metal species added to the ferrite mediums decreased in the order of Cu>Co>Ni>Mn, on the basis of water-splitting temperature. It was also found that the produced hydrogen amounts in the water-splitting step on partial reduced mediums were corresponding to the consumed hydrogen amounts in the previously partial reduction step.

A Study on Alloy Design for Improving Pitting Resistance of Austenitic Stainless Steel Weld under Ocean Water Atmosphere (오스테나이트계 스테인리스강 용접부의 공식저항성을 위한 합금설계에 관한 연구)

  • 변경일;정호신;성상철
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 1999
  • The base metal and weld metal of alloy designed austenitic stainless steels were electrochemically tested in artificial sea water. Pitting resistance of 14 different stainless steels was evaluated by measuring pitting potential. The effect of alloy element to pitting potential was evaluated by changing chromium, nickel, sulfur content. The site of pitting initiation was observed by optical microscope. As a result of electrochemical test, pitting resistance of weld metal was higher than base metal, and rapidly cooled weld metal has higher pitting potential than slowly cooled weld metal. In case of primary δ-ferrite solidification, pitting potential was increased, but residual δ-ferrite was detrimental to pitting resistance. Chromium was more effective to pitting resistance than nickel, and sulfur was very detrimental element to pitting resistance.

  • PDF

The variation of SCC resistance in duplex stainless steel weldment (이상계 스테인레스강 용접부의 응력부식균열에 관한 연구)

  • 김충언;강춘식;김희진
    • Journal of Welding and Joining
    • /
    • v.5 no.4
    • /
    • pp.36-46
    • /
    • 1987
  • The impact toughness and SCC resistance of duplex stainless steel weldment made by GTAW, GMAW and SMAW processes was studied. The impact toughness of GTA weld metal was higher than that of GMA weld metal which contained more ferrite phase than GTA weld metal. The impact toughness of SMA weld metal was the lowest due to the harmful effect of inclusions inspite of richness of more ductile austenite phase. From these facts, it can be concluded that the important factors determining the weld metal toughness were the amount of ferrite phase and the cleaness of weld metal. While the SCC resistance of SMA weld metal was lower than that of base metal and nay other weld metal, the SCC resistance of GMA and GTA weld metal was higher than that of base metal but that of all the HAZ's were lower than that of base metal. Therefore, the impact toughness and SCC resistance of GTA and GMA weldment was pretty good as long as phase ratio was propertly controlled. Although the phase ratio was controlled, SMA weld metal could not get a good combination because the lack of shielding from the environment results in a high content of inclusions in weld metal.

  • PDF

Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals - (스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

Preparation and Magnetic Properties of Ba-Ferrite Particles Using the Supercritical Water Crystallization Method

  • Nam, Sung-Chan;Kim, Kun-Joong;Park, Sang-Do
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.433-440
    • /
    • 2000
  • Barium ferrite particles were synthesized from Ba(NO$_3$)$_2$, Fe(NO$_3$)$_3$ and KOH mixed solutions using hydrothermal crystallization in supercritical water. The experimental apparatus for production of barium ferrite is a flow-type apparatus. Fine barium ferrite particles were produced because supercritical water causes the metal hydroxides to be rapidly dehydrated before significant growth takes place. The effects of Fe/Ba ratio and reaction time on the formation, particle size, and magnetic properties of barium ferrite were studied. When Fe/Ba ratio were varied from 0.5 to 12, single-phase barium ferrite powder was only produced in the range of 0.5〈Fe/Ba〈2. Also, with elevating reaction time, the BaO.6Fe$_2$O$_3$ particle size grew smaller. Especially, uniform barium hexaferrite particles of size 100-200nm were obtained at 80sec. In this study, therefore, single-phase barium ferrite particles are highly stable and can be produced continuously in a reaction time of less then 2min.

  • PDF