• Title/Summary/Keyword: Metal dispersion

Search Result 267, Processing Time 0.032 seconds

Fabrication of $Al_2O_3/Al$ Composite Materials by Mashy State Forming and its Hot Extrusion Process (반용융가공에 의한 $Al_2O_3/Al$ 복합재료의 제조 및 열간압출공정)

  • Kang, Chung-Gil;Kang, Sung-Soo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.248-258
    • /
    • 1993
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by stirring of A17075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semisolid alloy. The fabrication possibility of fiber-reinforced aluminum alloy containing $Al_2O_3$ short fibers with vigorous agitation of short fibers were obtained by control of stirring time, solid fraction and impeller speed in extrusion billet fabrication processes. The microstructure to extrusion billet fabricated by low pressure casting was investigated for fiber dispersion state. The relationship between the extrustion force and velocity at hot extrustion, the flow strain and extrusion ratio were theoretically described. The surface defects with lubricants and without lubricant after hot extrusion were investigated. The composites materials after hot extrusion were measured by vickers hardness with extrusion ratio. It has become clear that the secondary working such as hot extrusion was very useful to obtained improved the mechanical properties of metal matrix composites.

  • PDF

A Study on the Wear Characteristics of SiC Particle Dispersed Composites by Rheo-Compocasting Method (Rheo-compocasting법에 의한 SiC입자분산 복합재료의 마모특성에 관한 연구)

  • Kwak, Hyun-Man;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.238-247
    • /
    • 1993
  • Microstructure, hardness and wear characteristics of $SiC_p/Al-6.5wt%Si-1.7wt%Mg$ alloy composites fabricated by the method of rheo-compocasting and hot pressing are investigated in this study. The dispersion of SiC particles in the composites is homogeneous and the hardness improves as additional amount increases. The wear amount of the matrix metal increases highly as wear rates increase, for the wear mechanism changes from adhesive wear to melt wear, and the matrix metal was coated on the surface of revolving disc and its weight increases. In the 5vol% composites, Fe is adhered on the surface of specimen by the projection of the dispersed hard SiC particles which have net-work structure and the coating layer is about $300{\mu}m$. But in the composite more than 20vol%, the wear amount of composite decreases because the SiC particles which have superior hardness, wear resistance and heat resistance properties resist wear, the abrasive wear turn out predominant wear mechanism and so the wear amount of revolving disc increases.

  • PDF

Characteristics of Fatigue Crack Growth in SM570, POSTEN60, 80 Steel (SM570, POSTEN60 및 80 강재의 피로균열성장특성)

  • Jeong, Young-Wha;Kim, lk-Gyeom;Kang, Sung-Lib;Nam, Wang-Hyone;Kim, Eun-Sung
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.329-336
    • /
    • 2001
  • In this study, a series of fatigue tests are carried out in order to estimate quantitatively the characteristics of fatigue crack growth rate for high strength steels of SM570, POSTEN60, and POSTEN80 steel, that is, the influence on fatigue crack growth rate according to the welding line, the characteristics of fatigue crack growth according to the welding method and the kinds of steel, and the characteristics of fatigue crack growth for base metal, heat affected zone and weld metal. From the test results, in case that the notch if parallel to welding line, it knows that the retardations of fatigue crack growth rate in crack tip at early stage increase remarkably than in case that the notch is perpendicular to welding line due to compressive residual stress. And the characteristics of fatigue crack growth rate according to welding method are that the dispersion of fatigue crack growth rate in case of FCAW method is smaller than that of SAW method. Also, it knows that the fatigue crack growth rate converges in high stress intensity factor range.

  • PDF

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

Electronic Structure and Bonding in the Ternary Silicide YNiSi3

  • Sung, Gi-Hong;Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.325-333
    • /
    • 2003
  • An analysis of the electronic structure and bonding in the ternary silicide YNiSi₃is made, using extended Huckel tight-binding calculations. The YNiSi₃structure consists of Ni-capped Si₂dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of $(Y^{3+})(Ni^0)(Si^3)^{3-}$ for YNiSi₃constitutes a good starting point to describe its electronic structure. Si atoms receive electrons from the most electropositive Y in YNiSi₃, and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the ${\pi}^*$ orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi₃can be rewritten as $(Y^{3+})(Ni^{2-})(Si^{2-})(Si-Si)^+$, making the Si₂layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si₂double layer possesses single bonds within a dimer with a partial double bond character. Strong Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si₂π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis.

Silver Loading Effect for the Activated Carbon Fibers Pre-treated with Acid

  • Oh, Won-Chun;Yum, Min-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1189-1194
    • /
    • 2004
  • The adsorption isotherms of N2 onto the metallic silver treated activated carbon fiber samples after acid treatment are Type I with a small amount of capillary condensation hysteresis. Increasing amount of acid treatment leads to a decrease in SBETs and external surface area. But, micropore volume and average pore diameter are presented in constant regular values with increasing amount of sulfuric acid treatment. SEM observes the surface morphology and crystal grown state of metal on the fiber surface. The results of EDX of Ag-activated carbon fiber pre-treated with acid show the spectra corresponding to almost all samples rich in silver with increasing the amount of acid treated. The FT-IR spectra of Ag-activated carbon fiber show that the acid pre-treatment is consequently associated with the homogeneous dispersion of metal with the increased surface acidity of the activated carbon fiber. The type and quality of oxygen groups are determined with Boehm titration method. From the those results, a positive influence of the acidic groups on the carbon fiber surface by acid treatment is also demonstrated by an increase in the contents of metallic silver with increasing of acidic groups.

Heavy Metal Contamination in Soils and Groundwater in the Vicinity of the Sindae-dong Waste Disposal Site, Taejon (대전시 신대동 폐기물매립지 주변지역에서의 지하수 및 토양의 중금속오염)

  • 김경웅;손호웅
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.85-89
    • /
    • 1994
  • Groundwater and soil contamination by the leak of leachates from the waste disposal site (WDS) is one of the serious environmental problems, and leachates are generally produced by the biogeochmical decomposition and/or precipitation in the WDS. At the Sindae-dong waste disposal site in Taejon, the average Cu, Pb and Zn concentrations in the surrounding soils are higher than those in other Korean soils but these are not high enough to cause any harmful effect to man through the crop plants. Copper, Pb and Zn are not detected in the groundwater samples but the pH of the sample is 5.6 which is not suitable for the drinking water. In contaminated soil samples, the heavy metal concentrations are higher in subsurface soil than in surface soil and it may be influenced by the leachates in groundwater. With the electric resistivity method, the water contains layers are found in contaminated soils and the resistivity values are considerably low because of the dispersion of plume by the leak of leachates. According to the distance from the leak point of leachate, resistivity values increased and heavy metal concentraions in soils decreased due to the reduction of plume.

  • PDF

Hydrogen Storage Capacities of MOF-5 and Microporous Carbon: Effects of Pt Loading and Hybridization (MOF-5 및 마이크로다공성 카본의 수소 저장 성능: Pt 첨가 및 하이브리드화의 영향)

  • Yunatri, Rika Tri;Suh, Dong-Jin;Suh, Young-Woong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.377-385
    • /
    • 2008
  • In this study, we demonstrated that, although hydrogen molecules can be adsorbed onto the adsorbent such as MOF and MC itself, the loading of noble metal such as Pt is necessary to enhance the $H_2$ storage capacity since $H_2$ molecules can be dissociatively adsorbed on Pt metal and migrated to high-surface-area adsorbent via the primary spillover. In addition, the hybrid material have been prepared coupling MOF-5 with Pt/MC through carbon bridges formed by sucrose polymerization/carbonization. That this material showed the highest $H_2$ uptake at room temperature and about 100 bar is believed to be associated with the secondary spillover effect. Thus, such a strategy is very promising in developing $H_2$ storage technology using porous adsorbents. However, further experiments should be carried out to explore the choice of bridge carbon, the hybridization method, the dispersion technique of noble metals, etc.

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

Stabilization and thermal conductivity measurement of MWCNT nanofluids by using the $3-{\omega}$ method (3-${\omega}$ 방법을 이용한 다중벽 탄소나노튜브 나노유체의 침전 안정성 및 열전도계수 측정에 관한 실험적 연구)

  • Oh, Dong-Wook;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2171-2176
    • /
    • 2007
  • The 3-omega (3-${\omega}$) method is utilized to measure the thermal conductivity of nanofluids. A metal line heater on a silicon nitride membrane bridge structure is microfabricated by a bulk silicon etching method. Localized measurement of the thermal conductivity within the nanofluids droplet is possible by the fabricated 3-${\omega}$ sensor. Time varying AC temperature amplitudes and thermal conductivities are measured to check the stability of the nanofluids containing multi-wall carbon nanotubes (MWCNTs). Stabilities of MWCNT nanofluids prepared with different chemical treatments are compared. Acid treated MWCNT showed best dispersion stability in water while MWCNTs dispersed in water with surfactants such as Gum Arabic and Sodium dodecyl benzene sulfate showed clear sign of gravity dependence.

  • PDF