• Title/Summary/Keyword: Metal die

Search Result 858, Processing Time 0.02 seconds

A Process Planning System for Machining of Dies for Auto-Body Production(II)-Operation Planning and NC Code Post-Processing (자동차 차체금형 가공용 공정계획 시스템(II)-작업 계획과 NC 코드 후처리)

  • Sin, Dong-Mok;Lee, Chang-Ho;Choi, Jae-Jin;Noh, Sang-Do;Lee, Ki-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-73
    • /
    • 2001
  • This paper presents a process and operation planning system with an NC code post-processor for effective machining of press dies for production of cars. Based on the machining features, major parts of press dies are categorized into 15 groups and a standard process plan is defined for each group. The standard process plan consists of a series of processes where a process is defined as a group of operations that can be done with one setup. Details such as cutting tools, cutting conditions, and tool paths are decided at the operation planning stage. At the final stage of process and operation planning, the NC code post-processor we developed adjusts feedrates along the tool path to reduce machining time. The adjustment rule is selected based on the metal removal rate estimated by virtually machining with virtual cutting tool.

  • PDF

Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path (비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상)

  • Jeong, Hyun Gi;Jang, Eun Hyuk;Song, Youn Jun;Chung, Wan Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.11
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

Hourglass Control in Rigid-Plastic Finite Element Analysis (강소성 유한요소해석에서 Hourglass Control)

  • Gang, Jeong-Jin;O, Su-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1290-1300
    • /
    • 1996
  • The finite element method, based on rigid-plastic formulation, is widely used to simulate metal forming processes. In order to improve the computational efficiency of the rigid-plastic FEM, one-point integration is used to evaluate the stiffness matrix with four-node rectangular elements and eight-node brick elements. In order to control the hourglass modes, hourglass strain rate components were introduced and included in the effective strain rate definition, Numerical tests have shown that the proposed one-point integration scheme reduces the stiffness matrix evaluation time without deteriorating the convergence behavior of Newton-Raphson method. Simulations of a ring compression, a plane-strain closed-die forging and the three-dimensional spike forging processes were carried out by using the proposed integration method. The simulation results are compared to those obtained by applying the conventional integraiton method in terms of the solution accuracy and computational efficiency.

Characteristics of Surface Hardening by Laser Power Control in Real Time of Spheroidal Graphite Cast Iron (실시간 출력 제어를 통한 구상흑연 주철의 레이저 표면경화 특성)

  • Kim, Jongdo;Song, Mookeun
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • This study is related to the surface hardening treatment to spheroidal graphite cast iron for die by using high power diode laser. Laser device used in this experiment is capable of real-time laser power control. This is because the infrared temperature sensor (two color pyrometer) attached to the optical system measures the surface temperature of specimen and adjusts the laser power in real time. The surface treatment was carried out with the change of heat treatment temperature at the beam travel speed 3 mm/sec. Hardened width and depth was measured and hardened zone was analyzed by micro vickers hardness test in order to research the optimum condition of heat treatment. The changes in microstructure of the hardened zone also was examined. As a result of hardness measurement and observations on microstructure of hardened zone, hardness increased over three times as compared with base metal because the martensite was formed on the matrix structure.

Forming process design for the twist reduction of an automotive front side member (프론트 사이드 멤버의 비틀림 저감을 위한 성형공정 설계)

  • Yin, Jeong-Je
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.105-112
    • /
    • 2011
  • Increasing needs for light weight and high safety in modern automobiles induced the wide application of high strength steels in automotive body structures- The main difficulty in the forming of sheet metal parts with high strength steel is the large amount of springback including sidewall curl and twist in channel shaped member parts- Among these shape defects, twist occurs frequently and requires numerous reworks on the dies to compensate the shape deviation- But until now, it seems to be no effective method to reduce the twist in the forming processes- In this study, a new forming process to reduce the twist deformation during the forming of automotive structural member was suggested- This method consists of forming and restriking of embosses on the sidewall around the stretch flanging area of the part- and was applied in the forming process design of an automotive front side inner member with high strength steel- To evaluate the effectiveness of the method, springback analysis using $Pamstampa^{tm}$ was done- Through the analysis results, the suggested method was proven to be effective in twist reduction of channel shaped parts with stretch flanging area.

A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite (열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.

Optimization of feed system of base mold for washing machine using CAE (사출성형 CAE를 이용한 세탁기용 Base 성형용 금형의 유동 시스템 최적화)

  • Yoo, Min-ji;Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The position of the gate is one of the important factors for optimal injection molding. This is because inappropriate gate positions cannot fill the cavity uniformly, which can lead to defects such as contraction. In this study, CAE was performed on hot runner injection molding of the washing machine base and plasticity was compared by changing gate position from existing gate position. A total of two alternatives have been applied to compare the plasticity of the washing machine base according to its optimal gate position. The gate position of the improved molds and the gate position of the current mold is analyzed by injection molding analysis. The results of the fill time, the pressure at V/P switchover, clamping force, and deflection were compared. In washing machine base injection molding, the deflection was reduced by about 3.76% in the improved mold 2. In improved mold 1, the fill time during injection molding was reduced by 3.32% to enable uniform charging, and the clamping force was reduced by 31.24%. We have confirmed that the position of the gate can change the charging pressure and the clamping force and affect the quality and cost savings of the molded product.

A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts (플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.

The effect of injection molding cooling parameters on shrinkage of plastic roller (사출성형의 냉각 파라미터가 플라스틱 롤러의 수축에 미치는 영향)

  • Cho, Sung-Gi;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.8-13
    • /
    • 2021
  • A plastic roller for opening and closing the safety door of the injection molding machine was molded. The dimensional change of the measurement position of the roller was studied when the cooling time was applied differently among the molding conditions, and when the temperature of the coolant applied for mold cooling was also applied differently. Cooling times of 300 seconds and 400 seconds, hot and low-temperature coolant were applied. When the low-temperature coolant was applied, the measuring point of the roller shrank by 0.03 mm. However, when the high-temperature coolant was applied, the measuring point shrank by 0.3 mm. It was found that the application of low-temperature coolant among coolants was more suitable for the reference dimension of the molded article compared to the application of high-temperature coolant. Among the cooling water applied for the molding of plastic rollers, when high-temperature coolant is applied, the shrinkage rate measured immediately after ejection was smaller than when low-temperature coolant is applied. However, it was found that post shrinkage, which occurs over time, occurs much larger when high-temperature coolant is applied.

A study on the thickness change according to the necking ratio of aluminum tube(A3003, A6061) (알루미늄 튜브(A3003, A6061)의 축관률에 따른 두께 변화에 관한 연구)

  • Oh, Jong-Seong;Min, Kyung-Ho;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.37-42
    • /
    • 2021
  • The tube necking process increases the thickness of the material, and some of the tube necking products require cutting on the inside of the formed product as a post-process. In order to prevent over-cutting or un-cutting due to increased thickness during cutting, it is necessary to know in advance the increase in thickness after forming. Therefore, in this study, the thickness change according to the tube necking was observed. Aluminum 3003-F and 6061-O were used for the materials used in the experiment, and necking was carried out up to 50% of the outer diameter of the tube through five processes. The two materials were formed under the same conditions, and the thickness of three points was observed in each process. In addition, the thickness increase of the two materials was compared, and the trend of thickness increase according to the cumulative necking ratio was observed. As a result of the experiment, both materials had the smallest thickness at the end of the formed product. In addition, as a result of comparing the thickness measurement values of the two materials, the maximum difference was 0.1mm, indicating that there was no difference in thickness between the two materials.