• Title/Summary/Keyword: Metal correlation

Search Result 628, Processing Time 0.031 seconds

Determination of Adsorption Isotherms of Hydrogen on Zirconium in Sulfuric Acid Solution Using the Phase-Shift Method and Correlation Constants

  • Chun, Jang-H.;Chun, Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2009
  • The phase-shift method and correlation constants, i.e., the unique electrochemical impedance spectroscopy (EIS) techniques for studying the linear relationship between the behavior ($-{\varphi}$ vs. E) of the phase shift ($90^{\circ}{\geq}-{\varphi}{\geq}0^{\circ}$) for the optimum intermediate frequency and that ($\theta$ vs. E) of the fractional surface coverage ($0{\leq}{\theta}{\leq}1$), have been proposed and verified to determine the Langmuir, Frumkin, and Temkin adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at noble metal (alloy)/aqueous solution interfaces. At a Zr/0.2 M ${H_2}{SO_4}$ aqueous solution interface, the Frumkin and Temkin adsorption isotherms ($\theta$ vs. E), equilibrium constants (K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ for the Frumkin and K = $1.401{\times}10^{-16}\exp(8.1{\theta})mol^{-1}$ for the Temkin adsorption isotherm), interaction parameters (g = 3.5 for the Frumkin and g = 8.1 for the Temkin adsorption isotherm), rates of change of the standard free energy (r = $8.7\;kJ\;mol^{-1}$ for g = 3.5 and r = $20\;kJ\;mol^{-1}$ for g = 8.1) of H with $\theta$, and standard free energies ($96.13{\leq}{\Delta}G^0_{\theta}{\leq}104.8\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-17}\exp(-3.5{\theta})mol^{-1}$ and $0{\leq}{\theta}{\leq}1$ and ($94.44<{\Delta}G^0_{\theta}<106.5\;kJ\;mol^{-1}$ for K = $1.401{\times}10^{-16}\exp(-8.1{\theta})mol^{-1}$ and $0.2<{\theta}<0.8$) of H are determined using the phase-shift method and correlation constants. At 0.2 < $\theta$ < 0.8, the Temkin adsorption isotherm correlating with the Frumkin adsorption isotherm, and vice versa, is readily determined using the correlation constants. The phase-shift method and correlation constants are probably the most accurate, useful, and effective ways to determine the adsorption isotherms of H and related electrode kinetic and thermodynamic parameters at highly corrosion-resistant metal/aqueous solution interfaces.

Development and Verification of a Simultaneous Analytical Method for Whole Blood Metals and Metalloids for Biomonitoring Programs (바이오모니터링 프로그램을 위한 혈중 금속류 동시분석법 개발 및 확인 평가)

  • Cha, Sangwon;Oh, Eunha;Oh, Selim;Han, Sang Beom;Im, Hosub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.1
    • /
    • pp.64-77
    • /
    • 2021
  • Objective: Biological monitoring of trace elements in human blood samples has become an important indicator of the health environment. The purpose of this study was to detect and evaluate multiple metal items in blood samples based on ICP-MS, to perform comparative evaluation with the existing analysis method, and to develop and verify a new method. Methods: 100 μL of whole blood from 80 healthy subjects was used to analyze ten metals (Sb, tAs, Cd, Pb, Mn, Hg, Mo, Ni, Se, Tl) using ICP-MS. Verification of the analysis method included calculation of linearity, accuracy, precision and detection limits. In addition, a comparative test with the conventional graphite furnace atomic absorption spectroscopy (GF-AAS) method was performed. In the case of Pb, Cd, and Hg in whole blood, cross-analysis between Pb, Cd, and Hg analysis methods was performed to confirm the difference between the existing method and the new method (ICP-MS). Results: The coefficient of determination (R2) was 0.999 or higher in seven items and 0.995 or higher in three items. The Pb result showed that Pearson's correlation coefficient was very high at 0.983, and the intraclass correlation coefficient was 0.966. The Cd result showed that Pearson's correlation coefficient was 0.917 between the existing method and the new analysis concentration value. Its intraclass correlation coefficient was 0.960, and there was no significant difference between the two groups. Hg had a low correlation at 0.687, and the intraclass correlation coefficient was 0.761, which was lower than that of Pb and Cd. The intra-day and inter-day accuracy of Pd and Cd were satisfactory, but Hg did not meet the criteria for both accuracy and precision when compared with the conventional analysis method. Conclusion: This study can be meaningful in that it proposes a more efficient and feasible analysis method by verifying a blood heavy metal concentration experiment using multiple simultaneous analyses. All samples were processed and analyzed using the new ICP-MS. It was confirmed that the agreement between the two methods was very high, with the agreement between the current and new methods being 0.769 to 0.998. This study proposes an efficient simultaneous methodology capable of analyzing multiple elements with small samples. In the future, studies of various applications and the reliability of ICP-MS analysis methods are required, and research on the verification of accurate, precise, and continuous analysis methods is required.

A Study on the Five Senses Information Processing for HCI (HCI를 위한 오감정보처리에 관한 연구)

  • Lee, Hyeon Gu;Kim, Dong Kyu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.77-85
    • /
    • 2009
  • In this paper, we propose data format for smell, taste, touch with speech and vision which can be transmitted and implement a floral scent detection and recognition system. We provide representation method of data of smell, taste, and touch. Also, proposed floral scent recognition system consists of three module such as floral scent acquisition module using Metal Oxide Semiconductor (MOS) sensor array, entropy-based floral scent detection module, and floral scent recognition module using correlation coefficients. The proposed system calculates correlation coefficients of the individual sensor between feature vector(16 sensors) from floral scent input point until the stable region and 12 types of reference models. Then, this system selects the floral scent with the maximum similarity to the calculated average of individual correlation coefficients. To evaluate the floral scent recognition system using correlation coefficients, we implemented an individual floral scent recognition system using K-NN with PCA and LDA that are generally used in conventional electronic noses. In the experimental results, the proposed system performs approximately 95.7% average recognition rate.

The Effects of Tube Arrangement and Inclination on the Pressure Drop in Tube Bundles of Intermediate Beat Exchanger in Liquid Meta Reactor (액체금속로 중간열교환기 관다발에서의 튜브배열과 경사각도가 압력강하에 미치는 영향)

  • Nam Ho Yun;Kim Jong Man;Choi Jong Hyeun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.659-662
    • /
    • 2002
  • The present paper presents the experimental results for pressure drop in inclined tube bundles located in a rectangular duct. Measurements are made for pressure drop in triangular and rotated triangular tube arrays having P/d ratio of 1.6 and inclination angles of 30,45,60 and 90 degrees. The Reynolds number based on the free stream velocity and tube diameter ranges from $8{\times}10^2\;to\;6.3{\times}10^{4}$. The experimental results show that the magnitude of dimensionless pressure drop decreases significantly when the inclined angle is less than 45 degree. The measured data are compared with two existing correlations available in the literatures. The ESDU correlation agrees well with the present data far the triangular arrays. But some discrepancies are observed for the rotated triangular arrays when the inclined angles are 30 and 45 degrees. The Idel'chik correlation generally agrees well with the measured data for the rotated triangular arrays except for the inclined angle of 30 degree. The Idel'chik correlation needs modification for the triangular arrays. The modified Idel'chik correlation agrees well with the measured data within $10{\%}$. It is found that the present measured data can be applied to the evaluation and modification of previous correlations.

  • PDF

Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis (Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가)

  • Lee, Junga;Park, Da Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • The ecotoxicity tests for metal plating wastewater were conducted using Daphnia magna (D. magna) and Euglena agilis (E. agilis). Evaluation for sources of toxicity was performed by 1) Correlation analysis between the concentration of individual metals in the metal plating wastewater and the toxic effects on D. magna, 2) Toxicant identification evaluation methods including graduated pH method, EDTA procedure and sodium thiosulfate procedure, 3) Comparison of toxic effect value ($EC_{50}$ or $LC_{50}$) of individual metal on D. magna and it's concentration in the metal plating wastewater. To evaluate the possibility of E. agilis, a Korean domestic organism, as a test model organism for metal plating waste water, E. agilis toxicity test was also assessed using on-line euglena ecotoxicity system (E-Tox system). Based on toxicant characterization test using D. magna, it was expected that SS, oxidants and heavy metals are responsible for toxicity of metal plating waste water. Especially Cu, Hg, and Ag were the major cationic metals that caused toxicity. E. agilis is less sensitive than D. magna based on the $EC_{50}$ value however it shows prompt response to toxic test substances. E. agilis shows even a significant effect on the cell swimming velocity within 2 min to toxic metal plating wastewater. Our study demonstrates that E. agilis test can be a putative ecotoxicity test for assessing the quality of metal plating waste water.

Metal Biosorption by Surface-Layer Proteins from Bacillus Species

  • Allievi, Mariana Claudia;Florencia, Sabbione;Mariano, Prado-Acosta;Mercedes, Palomino Maria;Ruzal, Sandra M.;Carmen, Sanchez-Rivas
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified S-layers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of $Ca^{2+}$ and $Zn^{2+}$, but not of $Cd^{2+}$, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of S-layer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.

A Numerical Study of the Residual Hydrogen Concentration in the Weld Metal (용접금속 잔류수소농도의 수치해석 연구)

  • Yoo, Jinsun;Ha, Yunsok;S.R., Rajesh
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.42-46
    • /
    • 2016
  • Hydrogen assisted cracking (HAC) is one of the most complicated problem in welding. Huge amount of studies have been done for decades. Based on them, various standards have been established to avoid HAC. But it is still a chronic problem in industrial field. It is well known that the main causes of the hydrogen crack are residual stress, crack susceptible micro structures and a certain critical level of hydrogen concentration. Even though the exact generating mechanism is unclear till today, it has been reported that the hydrogen level in the weld metal should be managed less than a certain amount to prevent it. Matsuda studied that the residual hydrogen level in the weld metal can be varied even if the initial hydrogen content is same. It is also insisted in this report that the residual hydrogen concentration is in stronger correlation with hydrogen crack than the initial hydrogen content. But, in practical point of view, the residual hydrogen is still hard to consider because measuring hydrogen level is time and cost consuming process. In this regard, numerical analysis is the only solution for considering the residual hydrogen content. Meanwhile, Takahashi showed the possibility of predicting the residual hydrogen by a rigorous FE analysis. But, few commercial software suitable for solving the weld metal hydrogen has been reported yet. In this study, two dimensional thermal - hydrogen coupled analysis was developed by using the commercial FE software MARC. Since the governing equation of the hydrogen diffusion is similar to the heat transfer, it is shown that the heat transfer FE analysis in association with hydrogen diffusion property can be used for hydrogen diffusion analysis. A series of simulation was performed to verify the accuracy of the model. For BOP (Bead-On-Plate) and the multi-pass butt welding simulations, remaining hydrogen contents in the weld metal is well matched with measurements which are referred from Kim and Masamitsu.

Evaluation of Heavy Metal Sources and Its Transfer and Accumulation to Crop in Agricultural Soils (농경지 토양의 중금속 오염원 및 농작물로의 중금속 전이·축적 평가)

  • Lim, Ga-Hee;Jo, Hun-Je;Park, Gyoung-Hun;Yun, Sung-Mi;Kim, Ji-In;Noh, Hoe-Jung;Kim, Hyun-Koo;Yoon, Jeong-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.3
    • /
    • pp.27-42
    • /
    • 2018
  • It is important to identify the contaminant sources and to evaluate the fate and transport of heavy metals to crops in agricultural lands. This study was conducted to evaluate metal sources and its transfer and accumulation to crop in agricultural soils. Pollution indices were calculated and multivariate analysis was performed to identify metal sources. To evaluate transfer and accumulation of metals to crops, the contents of phytoavailable metals were evaluated by using single extraction method and the correlation between metal content and soil properties was analyzed. Also the BCF was quantitatively evaluated for investigating the metal transition to each crop grown in the research area. As a result, Cr, Ni, and Co were expected to be mainly derived from geologic factors due to weathering of certain parent rocks. The content of nickel in soils of the research area was slightly higher than that of the concern level criteria based on total concentration, but the amount transferred and accumulated in the crops was actually low. Understanding the contamination characteristics by investigating the pollution sources of heavy metals and its transfer and accumulation to crops through various evaluation techniques could provide important information for proper management of the agricultural land.

Evaluation of J-R Curve for Aluminum 5083 Alloy Weldment by Load Ratio Analysis (Load Ratio 해석에 의한 알루미늄 5083 합금 용접부의 J-R곡선 평가)

  • 윤한기;김연겸
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.178-186
    • /
    • 1997
  • The purpose of this study is to evaluate the J-R curve characteristics for the 5083 aluminum alloy weldment by the load ratio analysis. The results of the load ratio analysis are compared with those of the J-R curve which are obtained by the ASTM unloading compliance method. The crack length calculated by the load ratio analysis is agrees well with the measured final crack length. The slope of the exponential J-R curve estimated by the load ratio analysis is slightly smaller than that by the ASTM unloading compliance method. The exponential correlation of the J-R curve for the 5083 aluminum alloy base metal by the load ratio analysis is J = 93.88 ${\Delta}{\alpha}^{0.375}$. That for the weld metal and HAZ is J = 69.87 ${\Delta}{\alpha}^{0.389}$ and J = 70.59 ${\Delta}{\alpha}^{0.359}$ respectively. The J-R curve obtained by the ASTM unloading compliance method is overpredicted and should be offsetted due to the initial negative crack. On the other hand, the load ratio analysis method can evaluate the J-R curve by only load displacement curve without particular crack measurement equipment.

  • PDF

Studies on the Adsorption Capacity of Ni, Gu, and Pb by Genus Allium in Aqueous Solution (Allium속의 Ni, Cu 및 Pb 흡착력)

  • 김성조;백승화
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.299-306
    • /
    • 1996
  • The study was performed under the various conditions, such as the edible parts and particle sizes of Allium. The concentrations, the temperartures, and the pH of heavy metal solutions to investigated their adsorption capacity of heavy metals by genus Allium. The adsorption amount of Pb by Allium in the aqueous soluton was apparently higher than that of Ni and Cu by them. The larger the particle sloe of welsh onion and shallot was, the higher the adsorption of Cu was. The adsorptlons of Cu, Ni and sorption ratio was not different. As the temperature increased, the amount of heavy metal adsorption increased in general, but the adsorption of Ni by welsh onion and wild garlic and leek, Cu by shallot, wild garlic and leek decreased. Adsorption of Pb to Allium was not affected by the different values of pH, and adsorptions of Ni and Cu were greatly affected by those of pH. Especially, the higher the pH was, the greater the Ni adsorption to Allium was, and the lower the pH was, the higher the Cu adsorption was. The correlation between the amount of components in edible parts of Allium and that of adsorption of heavy metals was significantly high In amino acids containing sulfhydryl group(-SH) and vitamin B2.

  • PDF