• 제목/요약/키워드: Metal coordination

검색결과 176건 처리시간 0.025초

A Theoretical Study of CO Molecules on Metal Surfaces: Coverage Dependent Properties

  • Sang -H. Park;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.574-582
    • /
    • 1991
  • The CO molecules adsorbed on Ni(111) surface is studied in the cluster approximation employing EH method with self-consistent charge iteration. The effect of CO coverage is simulated by allowing the variation of valence state ionization potentials of each Ni atom in model cluster according to the self-consistent charge iteration method. The CO coverage dependent C-O stretching frequency shift, adsorption site conversion, and metal work function change are attributed to the charge transfer between metal surface and adsorbate. For CO/Ni(111) system, net charge transfer from Ni surface to chemisorbed CO molecules makes surface Ni atoms be more positive with increasing coverage, and lowers Ni surface valence band. This leads to a weaker interaction between metal surface valence band and Co $2{\pi}^{\ast}$ MO, less charge transfer to a single CO molecule, and the bule shift of C-O stretching frequency. Further increase of coverage induces the conversion of 3-fold site CO to lower coordination site CO as well as the blue shift of C-O stretching frequency. This whole process is accompanied by the continuous increase of metal work function.

Tandem Mass Spectrometric Evidence for the Involvement of a Lysine Basic Side Chain in the Coordination of Zn(II) Ion within a Zinc-bound Lysine Ternary Complex

  • Yu, Sung-Hyun;Lee, Sun-Young;Chung, Gyu-Sung;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1477-1483
    • /
    • 2004
  • We present the tandem mass spectrometry applications carried out to elucidate the coordination structure of Zn(II) bound lysine ternary complexes, $(Zn+Lys+Lys-H)^+$, which is a good model system to represent a simple (metallo)enzyme-substrate complex (ES). In particular, experimental efforts were focused on revealing the involvement of a lysine side chain ${\varepsilon}$-amino group in the coordination of $Zn^{2+}$ divalent ions. MS/MS fragmentation pattern showed that all the oxygen species within a complex fell off in the form of $H_2O$ in contrast to those of other ternary complexes containing amino acids with simple side chains (4-coordinate geometries, Figure 1a), suggesting that the lysine complexes have different coordination structures from the others. The participation of a lysine basic side chain in the coordination of Zn(II) was experimentally evidenced in MS/MS for $N{\varepsilon}$-Acetyl-L-Lys Zn(II) complexes with acetyl protection groups as well as in MS/MS for the ternary complexes with one $NH_3$ loss, $(Zn+Lys+Lys-NH_3-H)^+$. Detailed structures were predicted using ab initio calculations on $(Zn+Lys+Lys-H)^+$ isomers with 4-, 5-, and 6-coordinate structures. A zwitterionic 4-coordinate complex (Figure 7d) and a 5-coordinate structure with distorted bipyramidal geometry (Figure 7b) are found to be most plausible in terms of energy stability and compatibility with the experimental observations, respectively.

결명자 색소 추출액에 의한 견직물 염색 -매염 및 염착 mechanism을 중심으로- (Dyeing of Silk Fabric with Aqueous Extract of Cassia tora L. Seed - focusing on the mordanting and dyeing mechanisms -)

  • 도성국;강인아
    • 한국염색가공학회지
    • /
    • 제17권2호
    • /
    • pp.10-18
    • /
    • 2005
  • Silk fabrics mordanted with $Fe^{2+},\;Ni^{2+},\;and\;Cu^{2+}$ were dyed with the aqueous extract of Cassia tora L. seed which was known to include water soluble colorant kaempferol, one of flavonol compounds. Kaempferol can react with free radicals and chelate transition metal ions, which is thought to catalyze processes leading to the appearance of free radicals and have antioxidant activity. In relation to the coordinating and chelating mechanism of the ions with the silk protein and kaempferol, reasonable conclusions should be made on the colorant uptake and the water fastness of the fabric. The amount of the colorant on the fabric was in the order of $Fe^{2+}>Ni^{2+}>Cu^{2+}$. In case of dyeing through coordinaiton bonds between transition metal ions and silk protein and colorants, it was thought that the ions with the smaller secondary hydration shell, the higher preference to the atoms of the ligand coordinated, and the suitable bonding stability for the substitution of primarily hydrated water molecules for colorants led to the higher colorant uptake. The water fastnsess of the fabric was in the order of $Fe^{2+}>Cu^{2+}>Ni^{2+}$. It should be reasonable to choose transition metal ions with weak and strong tendency to the ionic and the coordination bond, respectively, to the carboxylate anion of the silk protein. Although further research needs to be done, the conclusions above may be generally applied to the natural dyeing through the coordination bond mechanism between transition metal ions and colorants and substrates.

내피세포가 배양된 나노셀룰로오스 하이드로겔의 비선형 유변물성 분석 (Nonlinear Rheological Properties of Endothelial Cell Laden-cellulose Nanofibrils Hydrogels)

  • 송예은;김민균;이희경;이두진
    • Composites Research
    • /
    • 제35권3호
    • /
    • pp.153-160
    • /
    • 2022
  • 목재 섬유 기반의 셀룰로오스 나노피브릴(cellulose nanofibrils, CNF)은 생체적합특성이 우수하여 조직 공학용 스캐폴드, 약물 운반체, 상처 치유용 겔 등의 생체 의료 분야에서 많은 관심을 받고 있다. 하지만, 셀룰로오스 나노피브릴은 상대적으로 약한 기계적 강도를 나타내기 때문에 높은 기계적 특성을 요구하는 응용 분야에 사용되기 어렵다는 한계를 가지고 있다. 따라서 본 연구에서는 셀룰로오스 나노피브릴의 기계적 강도를 향상시키기 위해 TEMPO (2,2,6,6-tetramethylpiperidin-oxyl) 산화 처리된 셀룰로오스 나노피브릴에 금속 양이온을 도입하여 금속-카르복실레이트 배위 결합을 가지는 하이드로겔을 제조하였다. 또한, 큰 진폭 진동 전단(large amplitude oscillatory shear) 측정과 Live/Dead 세포 시험을 통해 하이드로겔의 비선형 점탄성 거동과 세포 생존 능력을 분석하였다. 특히, 첨가된 금속염의 종류에 따라 세포의 증식 및 생존 능력이 변화하였고, 이는 하이드로겔들의 유변 물성 특성에도 영향을 미쳤다.

Metal Ion Selectivity of Surface Templated Resins Carrying Phosphate Groups

  • Murata, Masaharu;Maeda, Mizuo;Takagi, Makoto
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.529-534
    • /
    • 1995
  • The metal ion selective resins were prepared by surface template polymerization using monooleyl phosphoric acid (1), oleyl methyl phosphoric acid (2) or oleyl ethyl phosphoric acid (3) as an amphiphilic host surfactant. The $Cu^{2+}$-imprinted resins prepared in the presence of $Cu^{2+}$ adsorbed $Cu^{2+}$ much more effectively than did their reference resins. On the other hand, the $Cu^{2+}$-imprinted resins showed much less binding ability to $Zn^{2+}$. The template-dependent selectivity should be ascribed to a favorable placement of the surface-anchored metallophilic groups for multidentate coordination to specific metal ion.

  • PDF

Synthesis and Crystal Structures of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) Metal Complexes with NNO Functionalized Ligands

  • Jang, Yoon-Jung;Lee, Uk;Koo, Bon-Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.925-929
    • /
    • 2005
  • Some new metal(II) complexes, $M^{II}L_2$ [M = Mn (1), Co (2), Ni (3), Cu (4), and Zn (5)] of 2-acetylpyridine benzoylhydrazone ligand (HL) containing trifunctional NNO-donor system have been synthesized and crystallographically characterized for the complex 1 and 5. The complexes consist of two ligands to give sixcoordinate, which are bonded to the metal atom on a meridional plane through acetylpyridine ring nitrogen, azomethine nitrogen, and benzoyl oxygen atoms, respectively. The coordination geometry for other complexes was identified on the basis of the physicochemical data by elemental analyses, FAB -MS, IR, $^1H$ NMR, and electronic spectral measurements. The resulting data indicated that the complexes are accordance with the above formulation.

Metal Complexes of Enrofloxacin Part I: Preparation, Spectroscopic, Thermal Analyses Studies and Antimicrobial Evaluation

  • El-Shwiniy, Walaa H.;El-Attar, Mohamed S.;Sadeek, Sadeek A.
    • 대한화학회지
    • /
    • 제57권1호
    • /
    • pp.52-62
    • /
    • 2013
  • The interaction of titanium (IV), yttrium (III), zirconium (IV), palladium (II) and cerium (IV) with deprotonated enrofloxacin leads to the formation of the neutral or cationic mononuclear complexes. The isolated solid complexes have been characterized with physicochemical and spectroscopic techniques and thermogravimeteric analyses. The spectroscopic data indicate that the enrofloxacin ligand is on the deprotonated mode acting as bidentate ligand coordinated to the metal ions through the ketone oxygen and a carboxylato oxygen and the metal ions completed the coordination number with water molecules. The thermal decomposition mechanisms proposed for enrofloxacin and their metal complexes were discussed. The activation energies, $E^*$, enthalpies, ${\Delta}H^*$, entropies, ${\Delta}S^*$ and Gibbs free energies, ${\Delta}G^*$, of the thermal decomposition reactions have been derived from thermogravimetric (TG) and differential thermogravimetric (DTG) curves, using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The antimicrobial activity has been evaluated against six different microorganisms.

X-ray Structure and Electrochemical Properties of Ferrocene-Substituted Metalloporphyrins

  • 김진원;이석우;나용환;이기평;도영규;정세채
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권12호
    • /
    • pp.1316-1322
    • /
    • 2001
  • Transition metal complexes of novel mono- and di-ferrocene-substituted porphyrins have been synthesized and characterized by structural and electrochemical methods. The X-ray structures of Mn(FPTTP)Cl and Mn(DFTTP)Cl showed the distorted square pyramidal coordination geometry with syn configuration of chloride and ferrocenyl substituents. The electrochemistry of ferrocene-substituted porphyrins and their metal complexes has been determined to elucidate the ${\pi}-conjugation$ effect of the porphyrin ring. The ferrocenyl group of H2FPTTP underwent a reversible one-electron transfer process at 0.30 V, indicating the good electron donating effect of the phorphyrin ring to the ferrocene substituent. The redox potential of the ferrocenyl subunit and porphyrin ring was affected by the central metal ions of the metalloporphyrins, that is, Zn(II) and Ni(II) made the oxidation of ferrocene much easier and Mn(III) made it harder. The ferrocene subunits of H2DFTTP interacted electrochemically with each other with peak splitting of 0.21 V. The strength of the electrochemical interactions between the two ferrocenyl substituents can be controlled by central metal ions of metalloporphyrins.