• Title/Summary/Keyword: Metal coordination

Search Result 176, Processing Time 0.03 seconds

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination (촉매제로 구리이온을 이용한 환원성 제염에 의한 마그네타이트 용해)

  • Kim, Seonbyeong;Park, Sangyoon;Choi, Wangkyu;Won, Huijun;Park, Jungsun;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.

Zn/Co ZIF derived synthesis of Co-doped ZnO nanoparticles and application as high-performance trimethylamine sensors (Co가 도핑된 ZnO 나노입자의 Zn/Co ZIF 유도 합성 및 고성능 트리메틸아민 센서로의 응용)

  • Yoon, Ji-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.222-227
    • /
    • 2018
  • $Zn_{1-x}Co_x$ Zeolitic Imidazolate Framework (ZIF) (x = 0~0.05) were prepared by the co-precipitation of $Zn^{2+}$ and $Co^{2+}$ using 2-methylimidazole, which were converted into pure and Co-doped ZnO nanoparticles by heat treatment at $600^{\circ}C$ for 2 h. Homogeneous Zn/Co ZIFs were achieved at x < 0.05 owing to the strong coordination of the imidazole linker to $Zn^{2+}$ and $Co^{2+}$, facilitating atomic-scale doping of Co into ZnO via annealing. By contrast, heterogeneous Zn/Co ZIFs were formed at $x{\geq}0.05$, resulting in the formation of $Co_3O_4$ second phase. To investigate the potential as high-performance gas sensors, the gas sensing characteristics of pure and Co-doped ZnO nanoparticles were evaluated. The sensor using 3 at% Co-doped ZnO exhibited an unprecedentedly high response and selectivity to trimethylamine, whereas pure ZnO nanoparticles did not. The facile, bimetallic ZIF derived synthesis of doped-metal oxide nanoparticles can be used to design high-performance gas sensors.

The Effect of Substrate Temperature on the Electrical, Electronic, Optical Properties and the Local Structure of Transparent Nickel Oxide Thin Films

  • Lee, Kangil;Kim, Beomsik;Kim, Juhwan;Park, Soojeong;Lee, Sunyoung;Denny, Yus Rama;Kang, Hee Jae;Yang, Dong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.397-397
    • /
    • 2013
  • The electrical, electronic, optical properties and the local structure of Nickel Oxide (NiO) thin film have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), UV-spectrometer,Hall Effect measurement and X-ray absorption spectroscopy (XAS). The XPS results show that the Ni 2p spectra for all films consist of $Ni2p_{3/2}$ at around 854.5 eV which indicate the presence of Ni-O bond from NiO phase and for the annealed film at temperature above $200^{\circ}C$ shows the coexist Ni oxide and Ni metal phase. The REELS spectra showed that the band gaps of the NiO thin films were abruptly decreased with increasing temperature. The values of the band gaps are consistent with the optical band gaps estimated by UV-Spectrometer. The optical transmittance spectra shows that the transparency of NiO thin films in the visible light region was deteriorated with higher temperature due to existence of $Ni^0$. Hall Effect measurement suggest that the NiO thin films prepared at relatively low temperatures (RT and $100^{\circ}C$) are suitable for fabricating p-type semiconductor which showed that the best properties was achieved at $100^{\circ}C$, such as a low resistivity of $7.49{\Omega}.cm$. It can be concluded that the annealing process plays a crucial role in converting from p type to n type semiconductor which leads to reducing electrical resistivity of NiO thin films. Furthermore, the extended X-ray absorption fine structure (EXAFS) spectrum at the Ni K-edge was used to address the local structure of NiO thin films. It was found that the thermal treatments increase the order in the vicinity of Ni atom and lead the NiO thin films to bunsenite crystal structure. Moreover, EXAFS spectra show in increasing of coordination number for the first Ni-O shell and the bond distance of Ni-O with the increase of substrate temperature.

  • PDF

Adhesion Properties between Polyimide Film and Copper by Ion Beam Treatment and Imidazole-Silane Compound (이온빔 및 이미다졸-실란 화합물에 의한 폴리이미드 필름과 구리의 접착 특성)

  • Kang, Hyung Dae;Kim, Hwa Jin;Lee, Jae Heung;Suh, Dong Hack;Hong, Young Taik
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Polyimide (PI) surface modification was carried out by ion-beam treatment and silane-imidazole coupling agent to improve the adhesion between polyimide film and copper. Silane-imidazole coupling agent contains imidazole functional groups for the formation of a complex with copper metal through a coordination bonding and methoxy silane groups for the formation of siloxane polymers. The PI film surface was first treated by argon (Ar)/oxygen ($O_2$) ion-beam, followed by dipping it into a modified silane-imidazole coupling agent solution. The results of X-ray photoelectron spectroscopy (XPS) spectra revealed that the $Ar/O_2$ plasma treatment formed oxygen functional groups such as hydroxyl and carbonyl groups on the polyimide film surface and confirmed that the PI surface was modified by a coupling reaction with imidazole-silane coupling agent. Adhesion between copper and the treated PI film by ion-beam and coupling agent was superior to that with untreated PI film. In addition, adhesion of PI film treated by an $Ar/O_2$ plasma to copper was better than that of PI film treated by a coupling agent. The peeled-off layers from the copper-PI film joint were completely different in chemical composition each other. The layer of PI film side showed similar C1s, N1s, O1s spectra to the original Upilex-S and no Si and Cu atoms appeared. On the other hand the layer of copper side showed different C1s and N1s spectra from the original PI film and many Si and Cu atoms appeared. This indicates that the failure occurs at an interface between the imidazole-silane and PI film layers rather than within the PI layers.

  • PDF

Status and Changes in Chemical Properties of Paddy Soil in Gangwon Province

  • Yoon, Byeong-Sung;Choi, Seung-Chul;Lim, Soo-Jeoung;Heo, Su-Jeong;Kim, In-Jong;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • The chemical properties of paddy fields in Gangwon province were monitored every 4 years from 2003 to 2015 in order to provide basic information for soil fertility management of paddy fields. In 2015, the soil chemical properties of paddy fields were 5.9 in pH, $22g\;kg^{-1}$ in organic matter (OM), and $123mg\;kg^{-1}$ in available (Avail.) phosphate $P_2O_5$. Exchangeable (Exch.) potassium (K), calcium (Ca) and magnesium (Mg) were 0.39, 4.8 and $0.9cmolc\;kg^{-1}$, respectively, and Avail. $SiO_2$ was $170mg\;kg^{-1}$. In the long-term analysis, the contents of Avail. $SiO_2$, Exch. K and pH of paddy soils showed increasing tendency. However, Avail. $P_2O_5$, Exch. Ca and Mg tended to decrease, and there were no significant changes in the contents of OM. Soil OM, Avail. $P_2O_5$ and $SiO_2$ were not different among the different topographical sampling sites. However, the mean value of Exch. K and Ca were different among the different topographical sampling sites, and exceeded optimal values in the fluvio-marine plains. Different soil texture resulted in different soil pH, while no difference for OM, Avail. $P_2O_5$ and $SiO_2$. Paddy soil samples within appropriate pH range increased from 65% in 2003 to 77% in 2007, 68% in 2011, and 71% in 2015. In case of Avail. $SiO_2$, soil samples within appropriate range increased from 20% in 2003, to 37% in 2007, 29% in 2011, and 45% in 2015. Meanwhile, Cd and Pb were distributed to less than 5% of soil pollution standards. Cu, As and Zn were distributed to less than 10%, 15% and 20%, respectively. Therefore, paddy soil in Gangwon Province was judged to be safe. As a result, paddy fields with more or less in nutrient level need to be fertilized based on the soil analysis. And the application of silicate fertilizer is strongly recommended to those of paddy fields in need. In addition, soil management including the cultivation of green manure crop or application of rice straw is necessary to increase the organic matter content of paddy soil.

Investigation of Eu(Ⅲ)-Polyfunctional Organic Acid Complexes by Eu(Ⅲ) Luminescence Spectroscopy (Eu(Ⅲ) 발광 분광법을 이용한 Eu(Ⅲ)과 다가 유기산 착물 연구)

  • Lee, Byoung Ho;Shin, Hyun Sang;Moon, HiChung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.59-64
    • /
    • 1996
  • The 7F0→5D0excitation spectra of Eu(Ⅲ) complexed with polyfunctional monocarboxylic acid(glycolic acid, glycine and thioglycolic acid) containing a terminal O, N and S neutral donors and propionic acid were investigated using Eu(Ⅲ) luminescence spectroscopy. In the excitation spectra of Eu(Ⅲ)-propionate system, the stepwise appearance of the peaks was observed at 579.0, 579.2 and 579.5 nm with increasing in the ligand-to-metal ratio, which correspond to the formation of Eu(propionate)2+, Eu(propionate)2+ and Eu(propionate)3 species. Three maximum peaks were also obtained for Eu(Ⅲ)-glycolate, Eu(Ⅲ)-glycinate and Eu(Ⅲ)-thioglycolate systems and were found to be quite similar to those of Eu(Ⅲ)-propionate system. The q values (number of coordinated water molecules of Eu(Ⅲ) ion) obtained from the luminescence decay constants of Eu(Ⅲ)-glycolate and Eu(Ⅲ)-thioglycolate were 7.0 and 7.1, and compare well with 7.3 for Eu(Ⅲ)-propionate: Each ligand units replace around two coordinated water molecules. These results show that the polyfunctional monocarboxylates behaves like the propionate for Eu(Ⅲ) ion coordination.

  • PDF

Synthesis of Self-doped Poly(PEGMA-co-BF3LiMA) Electrolytes and Effect of PEGMA Molecular Weight on Ionic Conductivities (자기-도핑형 poly(PEGMA-co-BF3LiMA) 전해질의 합성과 이온전도도에 대한 PEGMA분자량의 영향)

  • Kim, Kyung-Chan;Ryu, Sang-Woog
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.4
    • /
    • pp.230-235
    • /
    • 2012
  • Polymer electrolytes consisted of $BF_3LiMA$ and 300 (PEGMA300) or 1100 (PEGMA1100) g $mol^{-1}$ of PEGMA were prepared and the electrochemical properties were characterized. Interestingly, the AC-impedance measurement shows $1.22{\times}10^{-5}S\;cm^{-1}$ of room temperature ionic conductivity from PEGMA1100 based solid polymer electrolytes while $8.54{\times}10^{-7}S\;cm^{-1}$ was observed in PEGMA300 based liquid polymer electrolytes. The more suitable coordination between lithium ion and ethylene oxide (EO) unit might be the reason of higher ionic conductivity which can be possible in PEGMA1100 based electrolytes since it has 23 EO units in monomer. The lithium ion transference number was found to be 0.6 due to the side reactions between $BF_3$ and lithium metal expecially for longer time but 0.9 was observed within 3000 seconds of measuring time which is strong evidence of a single-ion conductor.

Spectroscopic, Thermal and Biological Studies on Newly Synthesized Cu(II), Ni(II) and Co(II) Complexes with 3-N-2-hydroxyethylamine Benzanthrone and 3-N-2-aminoethylamine Benzanthrone (3-N-2-hydroxyethylamine benzanthrone 및 3-N-2-aminoethylamine benzanthrone에 대한 Cu(II), Ni(II) 및 Co(II) 착물의 분광학, 열 및 생물학적 연구)

  • Refat, Moamen S.;Megahed, Adel S.;El-Deen, Ibrahim M.;Grabchev, Ivo;El-Ghol, Samir
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.28-37
    • /
    • 2011
  • Spectroscopic (infrared, electronic and $1^H$-NMR), elemental analyses CHN, molar conductivity, thermogravimetric analyses (TGA/DTG) and biological studies, of both benzanthrone derivatives 3-N-2-hydroxy ethylamine benzanthrone (HEAB) and 3-N-2-amino ethylamine benzanthrone (AEAB) with Cu(II), Co(II) and Ni(II) chlorides were discussed herein. Based on the above studies, HEAB ligand was suggested to be coordinated to each metal ions via hydroxo and amino groups to form [Cu(HEAB)$(Cl)_2$].$2H_2O$, [Co(HEAB)$(Cl)_2(H_2O)_2$].$8H_2O$ and [Ni(HEAB)$(Cl)_2(H_2O)_2$].$7H_2O$ coordinated complex. On the other hand, AEAB has an octahedral coordinated feature with formulas [Cu(AEAB)$(Cl)_2(H_2O)_2$].$2H_2O$, [Co(AEAB)$(Cl)_2(H_2O)_2$].$4H_2O$ and [Ni(AEAB)$(Cl)_2(H_2O)_2$]. $6H_2O$. The molar conductance values at $25{\circ}C$ for all complexes in DMF are slightly higher than free ligands; this supported the presence of chloride ions inside the coordination sphere. Both benzanthrone ligands and their complexes have been screened against different kinds of bacteria.

X-ray and Spectroscopy Studies of Mercury (II) and Silver (I) Complexes of α-Ketostabilized Phosphorus Ylides (α-케토안정화된 일리드화 인의 수은(II) 및 은(I) 착물에 대한 X-선 및 분광학적 연구)

  • Karami, K.;Buyukgungor, O.;Dalvand, H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.38-45
    • /
    • 2011
  • The complexation behavior of the $\alpha$-ketostabilized phosphorus ylides $Ph_3P$=CHC(O) $C_6H_4-X$ (X=Br, Ph) towards the transition metal ions mercury (II) and Silver (I) was investigated. The mercury(II) complex {$HgX_2$ [Y]} 2 ($Y_1$=4-bromo benzoyl methylene triphenyl phosphorane; X=Cl(1), Br(2), I(3), $Y_2$=4-phenyl benzoyl methylene triphenyl phosphorane; X=Cl(4), Br(5), I(6)) have been prepared from the reaction of $Y_1$ and $Y_2$ with $HgX_2$ (X=Cl, Br, I) respectively. Silver complexes [$Ag(Y_2)_2]$ X(X=$BF_4$(7), OTf(8)) of the $\alpha$-keto-stabilized phosphorus ylides ($Y_2$) were obtained by reacting this ylide with AgX (X=$BF_4$, OTf) in $Me_2CO$. The crystal structure of complexes (1) and (4) was discussed. These reactions led to binuclear complexes C-coordination of ylide and trans-like structure of complexes $[Y_1HgCl_2]_2$. $CHCl_3$ (1) and $[Y_2HgCl_2]_2$ (4) is demonstrated by single crystal X-ray analyses. Not only all of complexes have been studied by IR, $^1H$ and $^{31}P$ NMR spectroscopy, but also complexes 1-3 have been characterized by $^{13}$CNMR.

Crystallographic Studies of Dehydrated $Ag^{+}\;and\;K^{+}$ Exchanged Zeolite A Reacted with Alkali Metal Vapor

  • Yang Kim;Mi Suk Jeong;Karl Seff
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.603-610
    • /
    • 1993
  • The crystal structure of dehydrated $Ag_{5.6}K_{6.4}-A$, zeolite A ion-exchanged with $K^+\;and\;Ag^+$ as indicated and dehydrated at 360$^{\circ}$C, has been determined by single-crystal X-ray diffraction techniques. Also determined were the structures of the products of the reactions of this zeolite with 0.1 Torr of Cs vapor at 250$^{\circ}$C for 48 h and 72 h, and with 0.1 Torr of Rb vapor at 250$^{\circ}$C for 24 h. The structures were solved and refined in the cubic space group Pm3m at 21(l)$^{\circ}$C (a= 12.255(l) ${\AA}$ , 12.367(l) ${\AA}$, 12.350(l) ${\AA}$, and 12.263(l) ${\AA}$, respectively). Dehydrated $Ag_{5.6}K_{6.4}$-A was refined to the final error indices $R_1= 0.044\;and\;R_2=0.037$ with 202 reflections for which I>3${\sigma}$(I). The crystal structures of the reaction products were refined to $R_1=0.087\;and\;R_2= 0.089$ with 157 reflections, $R_1=0.080\;and\;R_2= 0.087$ with 161 reflections, and $R_1= 0.071\;and\;R_2=0.061$ with 88 reflections, respectively. In the structure of $Ag_{5.6}K_{6.4}-A,\;K^+$ ions block all 8-oxygen rings, and one reduced Ag atom is found per sodalite cavity. Also, ca. 4.6 $Ag^+ ions\;and\;3.4 K^+ ions$ are found at 6-ring sites in the large cavity. The crystal structures of the reaction products show that all $K^+$ and $Ag^+$ ions have been reduced, and that all K^+$ atoms have left the zeolite. Cs or Rb species are found at three different crystallographic sites: 3.0 $Cs^+\;or\;3.0Rb^+$ ions per unit cell occupy 8-ring centers, ca. 8.0 $Cs^+ ions\;or\;5.7 Rb^+$ ions, are found on threefold axes opposite 6-rings deep in the large cavity, and ca. 2.5 $Cs^+\;or\;2.3 Rb^+ ions are found on threefold axes in the sodalite unit. Also, 1 $Rb^+$ ion lies opposite a 4-ring. Silver atoms, corresponding to 75% or 40% occupancy of hexasilver clusters stabilized by coordination to $Cs^+\;or\;Rb^+$ ions, are found at the centers of the large cavities. In the crystal structures of dehydrated Ag_{5.6}K_{6.4}-A$ reacted with Cs vapor, excess Cs atoms are absorbed and these form (locally) cationic clusters such as $(Cs_4)3^+\;and\;(Cs_6)4^+$.