Browse > Article
http://dx.doi.org/10.5012/jkcs.2011.55.1.028

Spectroscopic, Thermal and Biological Studies on Newly Synthesized Cu(II), Ni(II) and Co(II) Complexes with 3-N-2-hydroxyethylamine Benzanthrone and 3-N-2-aminoethylamine Benzanthrone  

Refat, Moamen S. (Department of Chemistry, Faculty of Science, Port Said University)
Megahed, Adel S. (Department of Chemistry, Faculty of Science, Port Said University)
El-Deen, Ibrahim M. (Department of Chemistry, Faculty of Science, Port Said University)
Grabchev, Ivo (Institute of Polymers, Bulgaria Academy of Science)
El-Ghol, Samir (Department of Chemistry, Faculty of Science, Port Said University)
Publication Information
Abstract
Spectroscopic (infrared, electronic and $1^H$-NMR), elemental analyses CHN, molar conductivity, thermogravimetric analyses (TGA/DTG) and biological studies, of both benzanthrone derivatives 3-N-2-hydroxy ethylamine benzanthrone (HEAB) and 3-N-2-amino ethylamine benzanthrone (AEAB) with Cu(II), Co(II) and Ni(II) chlorides were discussed herein. Based on the above studies, HEAB ligand was suggested to be coordinated to each metal ions via hydroxo and amino groups to form [Cu(HEAB)$(Cl)_2$].$2H_2O$, [Co(HEAB)$(Cl)_2(H_2O)_2$].$8H_2O$ and [Ni(HEAB)$(Cl)_2(H_2O)_2$].$7H_2O$ coordinated complex. On the other hand, AEAB has an octahedral coordinated feature with formulas [Cu(AEAB)$(Cl)_2(H_2O)_2$].$2H_2O$, [Co(AEAB)$(Cl)_2(H_2O)_2$].$4H_2O$ and [Ni(AEAB)$(Cl)_2(H_2O)_2$]. $6H_2O$. The molar conductance values at $25{\circ}C$ for all complexes in DMF are slightly higher than free ligands; this supported the presence of chloride ions inside the coordination sphere. Both benzanthrone ligands and their complexes have been screened against different kinds of bacteria.
Keywords
Benzanthrone; transition metals; complexes; thermal studies; biological studies;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Proskuryakova, N.; Nurmuknametov, R. Optics and Spectroscopy 1969, 27, 119.
2 Bhujle, V.; Radhye, M. Indian J. Chem. 1971, 9, 1405.
3 Koksal, H.; Tumer, M.; Seria, S. Synth. React. Inorg. Met. Org. Chem. 1996, 26, 1577.   DOI
4 Mohamed, G. G. Spectrochim. Acta Part A 2001, 57, 411.   DOI
5 Freeman, E. S.; Carroll, B. J. Phys. Chem. 1958, 62, 394.   DOI
6 Kalsi, P. S. Spectroscopy of Organic Compounds; 4th ed; New Age International Ltd: New Delhi, 1999.
7 Sestak, J.; Satava, V.; Wendlandt, W.W. Thermochim. Acta 1973, 7, 333.   DOI
8 Coats, A.W.; Redfern, J. P. Nature 1964, 201, 68.   DOI
9 Ozawa, T. Bull. Chem. Sot. Jpn. 1965, 38, 1881.   DOI
10 Wendlandt, W.W. Thermal Methods of Analysis; Wiley: New York, 1974.
11 Horowitz, H.W.; Metzger, G. Anal. Chem. 1963, 35, 1464.   DOI
12 Flynn, J. H.; Wall, L. A. Polym. Lett. 1966, 4, 323.   DOI
13 Kofstad, P. Nature 1957, 179, 1362.   DOI
14 Flynn, J. H. F.; Wall, L. A. J. Res. Natl. Bur. Stand. A 1996, 70, 487.
15 Spirro, T. G. Metal Ion in Biology; Wiley: NY, Vol. 13, 1981.
16 Sigel, H. Metal Ion in Biology Systems; Dekker: NY, Vol. 13, 1981.
17 Fee, J. A. Struct. Bond. (Berl.) 1975, 1, 23.
18 CIBA Foundation Symposium no. 79, Excerpt, Medica, Amsterdam, 1980.
19 Beinert, H. Coord. Chem. Rev. 1980, 279, 33.
20 Reinhammer, B. Adv. Inorg. Biochem. 1979, 91, 1.
21 Laurie, S. H.; Mohammed, E. S. Coord. Chem. Rev. 1980, 279, 33.
22 Soloman, E. I.; Penfield, K. W.; Wilcox, D. E. Struct. Bond (Berl.) 1983, 1, 53.
23 Gray, H. B.; Soloman, E. I.; Spiro, T. G. Metal Ions in Biology; Wiley: NY, 1981, p 3.
24 Sigel, H. Metal Ions in Biological Systems; Dekker: NY, Vol. 12, 1980.
25 Ulrich, E.; Markley, J. L. Coord. Chem. Rev. 1978, 109, 27.
26 Swearingen, J. K.; West, D. X. Trans. Met. Chem. 2001, 26, 252.   DOI
27 Wood, J. M.; Sigel, H. Microbial Strategies in Resistance to Metal Ion Toxicity Metal Ion in Biology; Marcel Dekker: York, 1984.
28 Joud, E. M.; Riou, A.; Allian, M.; Khan, M. A.; Bouet, G. M. Polyhedron 2001, 20, 67.   DOI
29 Xinde, Z.; Wang, C.; Lu, Z.; Dang, Y. Trans. Met. Chem. 1997, 22, 13.
30 Chandra, S.; Gupta, K. Trans. Met. Chem. 2002, 27, 196.   DOI
31 Dhiman, A. M.; Wododker, K. N. Indian J. Chem. 2001, B40, 636.
32 Chandra, S.; Gupta, K. Trans. Met. Chem. 2002, 27, 329.   DOI
33 Grabchev, I.; Bojinov, V.; Moneva, I. J. Mol. Str. 1998, 471, 19.   DOI
34 Konstantinova, T. N.; Lazarova, R. A. Dyes and Pigments 2007, 74, 208.   DOI
35 Grabchev, I.; Monevai, I. Comp. Rend. Acad. Bulg. Sci. 1997, 50(6), 59.
36 Grabchev, I.; Bojinov, V.; Moneva, I. J. Mol. Str. 1998, 19, 271.
37 Grabchev, I.; Moneva, I. Dyes and Pigments 1998, 37, 155.   DOI
38 Grabchev, I.; Bojinov, V.; Moneva, I. Dyes and Pigments 2001, 48, 143.   DOI
39 Enya, T.; Suzuki, H.; Hirayama, T.; Hisamatsu, Y. Environ. Sci. Technol. 1997, 31, 2772.   DOI
40 Beland, F. A.; Kadlubar, F. F. Handbook of experimental pharmacology Chemical Carcinogenesis and Mutagenesis; Springer: Heidelberg, 1990, 94(1), 267-325.
41 Beland, F. A.; Marrques, M. M. International Agency for Research on cancer; Lyon: France, 1994; pp 229-244.
42 Hanna, P. E.; Banks, R. B. Arylhydroxylamines and arylhydroxamic acids: conjugation reactions; Anders, M. W., Ed.; Bioactivation of foreign compounds; Academic Press: Orlando, Fla, 1985; pp 375-402.
43 Shioda, H.; Kato, S.; Juki Kagakaishi 1957, 15, 362.
44 Chandra, S.; Kumar, R. Spectrochim. Acta part A 2005, 61, 437.   DOI
45 Kadlubar, F. F.; Beland, F. A., Chemical properties of ultimate carcinogenic metabolites of arylamines and arylamides. In: Polycyclic Hydrocarbons and Carcinogenesis; American Chemical Society: Washington, DC, 1985, pp 341-370.
46 Solomon, E. I.; Brunold, T. C.; Davis, M. Z.; Kemseley, J. N.; Lee, S. K.; Lehnert, N.; Skulan, A. J.; Yang, Y. S.; Zhou, J. Chem. Rev. 2000, 100, 253.
47 Chandra, S.; Kumar, R. Trans. Met. Chem. 2003, 29(3), 269.
48 Chandra, S.; Kumar, R. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2005, 35, 103.
49 Krasovitski, B.; Bolotin, B. Organic luminophore; Chimia: leningrade, 1984 (in Russian).
50 Carlini, F.; Paffoni, C.; Bpffa, G. Dyes and Pigments 1982, 3, 59.   DOI