• Title/Summary/Keyword: Metal coordination

Search Result 176, Processing Time 0.027 seconds

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

Synthesis of New VO(II), Co(II), Ni(II) and Cu(II) Complexes with Isatin-3-Chloro-4-Floroaniline and 2-Pyridinecarboxylidene-4-Aminoantipyrine and their Antimicrobial Studies

  • Mishra, Anand P.;Mishra, Rudra;Jain, Rajendra;Gupta, Santosh
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • The complexes of tailor made ligands with life essential metal ions may be an emerging area to answer the problems of multi drug resistance. The coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from isatin with 3-chloro-4-floroaniline and 2-pyridinecarboxaldehyde with 4-aminoantipyrine have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, FAB mass and magnetic susceptibility measurements. FAB mass data show degradation of complexes. Both the ligands behave as bidentate and tridentate coordinating through O and N donor. The complexes exhibit coordination number 4, 5 or 6. The Schiff base and metal complexes show a good activity against the bacteria; $Staphylococcus$ $aureus$, $Escherichia$ $coli$ and $Streptococcus$ $fecalis$ and fungi $Aspergillus$ $niger$, $Trichoderma$ $polysporum$, $Candida$ $albicans$ and $Aspergillus$ $flavus$. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases. The minimum inhibitory concentrations of the metal complexes were found in the range 10-40 ${\mu}g/mL$.

Coordination of Cascaded Metal Oxide Varistor-Based Surge Protective Devices (종속 접속된 산화아연바리스터 기반의 서지방호장치의 협조)

  • Kim, Tae-Ki;Shin, Hee-Kyung;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.70-77
    • /
    • 2015
  • This paper describes the experimental results obtained from various installation conditions of cascaded metal oxide varistor(MOV)-based SPDs with the objectives to analyze the coordination of the cascaded surge protective devices(SPDs) and to propose the proper selection and installation methods of the cascaded SPDs. The residual voltage, discharge current and energy sharing between the upstream and downstream SPDs in the $10/350{\mu}s$ direct lightning current wave were measured and discussed. The coordination of cascaded MOV-based SPDs is closely related to the varistor voltage and installation methods of SPDs. In cascaded SPDs without dedicated decoupling elements, the natural impedance of leads connecting two SPDs can act as a decoupler for the coordination of MOV-based SPDs. Even if the varistor voltage of the upstream SPD is higher than that of the downstream SPD at long distances between two SPDs, the energy coordination of cascaded SPDs could effectively be fulfilled in the conditions of large surge currents and the optimum voltage protection level can be achieved. Consequently, if the distance between voltage limiting type SPDs is long, the coordination of the cascaded SPDs should be determined by taking into account the decoupling effects due to the intrinsic inductance of leads connecting the upstream and downstream SPDs.

Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

  • Choi, Eun-Young;Gao, Chun-Ji;Lee, Suck-Hyun;Kwon, O-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1264-1267
    • /
    • 2012
  • We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short $-O(CH_2)_6CH_3$ or long $-O(CH_2)_9CH_3$ side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, $-(OCH_2CH_2)_2CH_3$ and $-(OCH_2CH_2)_3CH_3$, form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains.

A Series of Transition-metal Coordination Complexes Assembled from 3-Nitrophthalic Acid and Thiabendazole: Synthesis, Structure and Properties

  • Xu, Wen-Jia;Xue, Qi-Jun;Liang, Peng;Zhang, Ling-Yu;Huang, Yan-Feng;Feng, Yu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.218-224
    • /
    • 2014
  • In order to explore new coordination frameworks with novel designed 3-nitrophthalic acid and the same N-donor ancillary ligand, a series of novel coordination complexes, namely, $[Cd_2(3-NPA)_2(TBZ)_2(H_2O)_2]{\cdot}2H_2O$(1), $[Zn_2(3-NPA)_2(TBZ)_2]$(2), $[Zn_2O(3-NPA)(TBZ)(H_2O)]_n$(3), $[Co(3-NPA)(TBZ)(H_2O)]_n$(4) (3-$NPAH_2$ = 3-nitrophthalic acid), have been hydrothermally synthesized through the reaction of 3-nitrophthalic acid with divalent transition-metal salts in the presence of N-donor ancillary coligand (TBZ = thiabendazole). As a result of various coordination modes of the versatile 3-$NPAH_2$ and the coligand TBZ, these complexes exhibit structural diversity. X-ray structure analysis reveals that 1 and 2 are 0D molecular rings, while 3 and 4 are one-dimensional (1D) infinite chain polymers. And the weak O-H${\cdots}$O hydrogen bonds and C-H${\cdots}$O nonclassical hydrogen bonds as well as ${\pi}-{\pi}$ stacking also play important roles in affecting the final structure where complexes 1, 3 and 4 have 3D supramolecular architectures, while complex 2 has a 2D supramolecular network. Also, IR spectra, fluorescence properties and thermal decomposition process of complexes 1-4 were investigated.