• Title/Summary/Keyword: Metal contamination

Search Result 696, Processing Time 0.033 seconds

Contamination Assessment of Water Quality and Stream Sediments Affected by Mine Drainage in the Sambo Mine Creek (삼보광산 수계 하천수질 및 퇴적토의 오염도 평가)

  • Jung, Goo-Bok;Kwon, Soon-Ik;Hong, Sung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Kim, Won-Il;Lee, Jong-Sik;Kang, Kee-Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • BACKGROUND: Mine drainage from metal mining districts is a well-recognized source of environmental contamination. Oxidation of metal sulfides in mines, mine dumps and tailing impoundments produces acidic, metal-rich waters that can contaminate the local surface water and soil. METHODS AND RESULTS: This experiment was carried out to investigate the pollution assessment of heavy metal on the water quality of mine drainage, paddy soils and sediment in lower watershed affected by mine drainage of the Sambo mine. The average concentrations of dissolved Cd (0.018~0.035 mg/L) in mine drainage discharged from the main waste rock dumps(WRD) was higher than the water quality standards (0.01 mg/L) for agricultural water in Korea. Also, the average concentrations of dissolved Zn, Fe and Mn were higher than those of recommended maximum concentrations (Zn 2.0, Fe 5.0, Mn 0.2 mg/L) of trace metal in irrigation water proposed by FAO (1994). The average contents of Pb and Zn in paddy soils was higher than those of standard level for soil contamination(Pb 200, Zn 300 mg/kg) in agricultural soil by Soil Environmental Conservation Act in Korea. Also, the concentrations of Cd, Pb and Zn in sediment were higher than those of standard level for soil contamination (Cd 10, Pb 400, Zn 600 mg/L) in waterway soil by Soil Environmental Conservation Act in Korea. The enrichment factor (EFc) of heavy metals in stream sediments were in the order as Cd>Pb>Zn> As>Cu>Cr>Ni. Also, the geoaccumulation index (Igeo) of heavy metals in stream sediments were in the order as Zn>Cd>Pb>Cu>As>Cr>Ni, specially, the geoaccumulation index (Igeo) of Zn (Igeo 3.1~6.2) were relatively higher than that of other metals in sediment. CONCLUSION(s): The results indicate that stream water and sediment were affected by mine drainage discharged from the Sambo mine at least to a distance of 1 km downstream (SN-1, SN-2) of the mine water discharge point.

The analysis of heavy metal total contents In milt of Han river (한강유역 저니층의 중금속 함량 전분석)

  • 정일현;김세진
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 1994
  • An analytic and comparative study on the level of concentration on heavy metals in silt of Han- River was described. The Paldang lake supplies tap water resources for the 20 million residents in the metropolitan zone. It is composed that three steps for water works by the water volume in all 35,072 thousand tons : the first section is 7,251 thousand tons, the second is 15,980 thousand tons and the third is 11,841 thousand tons. However, recently it has becoming a serious social issue for water contamination on Paldang by heavy metals due to gathering of silt. It has concentrated on analysis and comparison study on the level of heavy metals between contamination- estimated zone and the other zones. After all, Concentration on heavy metals of expected none pollute's zone and expected pollute's zone indicate almost similar results. In the end, heavy metals within silt of Han- River consider not to effect on pollution but quantity of natural condition.

  • PDF

동위원소를 이용한 폐금속광산 지역 오염원 추적 연구

  • Yeom Seung-Jun;Lee Pyeong-Gu;Lee In-Gyeong;Lee Uk-Jong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.209-212
    • /
    • 2006
  • Using sulfur sotope analysis of dissolved sulfate in surface water, we have investigated the source of sulfate in order to identify the abandoned metallic mines, which have the potential of heavy metal contamination within watershed. The range of the sulfur isotope values for dissolved sulfate in stream waters (DD-1 and 2) are similar to those of sulfides from the Dunjun mine, which suggests that oxidation of sulfides is the principal source of $SO_4^{2-}$ in these stream waters. Also, heavier sulfur isotopes in waters near Baekjun and Hamchang mines imply the possibility of contamination in waters by these metallic mines.

  • PDF

The State and Sources of Contamination with Heavy Metals and Anion in Stream Within Chonju City (전주시 하천의 중금속과 음이온에 대한 수질현황 및 오염원)

  • 오창환;이지선;김강주;정성석;황갑수;이영엽
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • The Chonju and Samchun streams are passing though Chonju city and several contamination sources are located along these streams. The Samchun stream joins the Chonju stream in the Gosapyeong waste disposal site and the Chonju stream finally joins to the Mankyeong River. The objectives of this study are to determine the state and sources of contamination for heavy metals and anions in the Chonju and Samchun streams and to evaluate the effect of these streams on the contamination of the Mankyeong River. In order to select sampling locations, a stratified random sampling method was used. These streams was divided into several parts according to the expected contamination state, and samples were selected randomly from these parts. Generally, the water qualities of these streams were generally below the Drinking Water Level at the time of sampling in various heavy metals and anions. However, the levels of AI, Fe, $NH_{3}-N,Cl^{-}$, Cl- in these streams could be higher during dry season due to continuous inputs from various contamination sources. This study identified several contamination sources for these streams; two waste disposal sites along these streams for Fe, Mn, AI, Zn and $Cl^{-}$, the Chonju Waste Water Treatment Plant for Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NO_{2}N$, and $NH_{3}-N$ and the untreated sewages for AI, Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NH_{3}-N$ and $PO_{4}^{2-}$. This study also revealed that the Chonju stream itself is an important contamination source for Fe, Mn, $Cl^{-}$ and $SO_{4}S$ in the Mankyung River.

  • PDF

Effects of Saliva Contamination on Shear Bond Strength with Conventional, Moisture Insensitive, and Self-Etching Primers (Moisture Insensitive Primer와 Self-Etching Primer를 사용한 교정용 브라켓 접착 시 타액오염이 전단결합강도에 미치는 영향 비교)

  • Oh, Yoonjeong;Oh, Sohee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • The aim of this study was to compare the shear bond strengths of orthodontic bracket with Conventional primer (CP), Moisture insensitive primer (MIP), and Self-etching primer (SEP). In addition, the effect and the timing of saliva contamination on shear bond strength was evaluated. A total of 135 bovine mandibular incisors were used in the study and divided into 3 groups. Group I, II and III were used CP, MIP, SEP, respectively. Each group was then divided into three subgroups: the group without saliva contamination, the group with primer application after saliva contamination, and the group with saliva contamination after primer application. After the primer application, the metal bracket for the lower incisor was attached and the shear bond strength was measured. The mean shear bond strengths was highest with CP and lowest with SEP in dry condition. However, CP showed a significant decrease in shear bond strength in the presence of saliva contamination. MIP and SEP showed no significant decrease in shear bond strength with saliva contamination.

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.

Study on Soil Extraction Methods for the Human Health Risk Assessment of Crop Intake Pathway around Abandoned Metal Mine Areas (폐금속광산 지역 농작물섭취경로의 인체위해도 산정을 위한 생물농축계수와 토양분석방법에 관한 연구)

  • Lim, Tae-Yong;Lee, Sang-Woo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.56-66
    • /
    • 2016
  • Generally, the contribution of crop-intake pathway (CIP) is remarkable in human health assessment (HHA) of heavy metal contamination. Although the crop exposure concentrations (Cp) should directly be used for calculating the average daily dose (ADD) of CIP, the soil exposure concentration (Cs) multiplied by soil-crop bio-concentration factor (BCF) has frequently been used instead of using Cp values. Thus, the BCF values are significant in the HHA, and care should be taken to ensure the reasonable acquisition of BCF values. Meanwhile, the BCF values are known to be significantly affected by analytical methods. Nevertheless, they have been calculated from the concentrations of soil and crop analyzed by only one method: total digestion (aqua regia extraction). For this reason, this study was initiated to seek appropriate soil analysis methods for effective computation of the ADD of CIP. The concentrations of 5 metal contaminants (As, Cd, Cu, Pb, and Zn) in 127 soil samples obtained from 4 abandoned metal mine areas were analyzed by several methods including total digestion and partial digestions using 0.1/1 N HCl, 1M $NH_4NO_3$, 0.1 M $NaNO_3$, and 0.01M $CaCl_2$. The heavy metal concentrations in 127 crop samples (rice grains) were analyzed by total digestion as well. Using the concentrations of soils and crops, the BCF values of each contaminant were calculated according to the kind of soil extraction methods applied. Finally, the errors between Cp and $C_s{\times}BCF$ were computed to evaluate the relevance of each method. The results indicate that the partial extraction using 0.1 N and 1 N HCl was superior or equivalent to total digestion. In addition, the 0.1M $NaNO_3$ method combined with total digestion is recommended for improving the reliability of BCF values.

A study on the washing remediation of tailing waste and contaminated surrounding soil of a bandoned metal mines (폐금속광산 광미 및 주변 오염토양 세정에 관한 연구)

  • 이동호;박옥현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.87-101
    • /
    • 1999
  • This study has been carried out to examine the feasibility of washing technique for reducing the heavy metal contamination level of tailing wastes and agricultural soil surrounding abandoned metal mines. Some organic acids with low molecular weight were used as washing solution. Initial contamination levels of copper and lead for some soil samples were found to exceed the standard levels of countermeasure and concern, and those of cadmium to approach the standard level of countermeasure. Experimental results using sequential extraction method revealed that more than half of copper and lead existing in tailing wastes are adsorbed forms available for plants. There are some proportional relationships between metal concentrations determined by using 0.1N HCI solution and those determined by sequential extractions. Citric acid was turned out to be superior to oxalic acid and acetic acid with low molecular weight in washing above three metals. When citric acid is used for washing heavy metals from soil, it is desirable to operate at pH less than 5.5 for better washing effect. Metal removal effect by citric acid solution has been proved to depend upon solution concentration and the mass ratio of solution to soil. Addition of SDS(Sodium Dodecyl Sulfate) to citric acid improved the washing effect of cadmium among three metal most significantly. while copper removal did not change. Washing technique using citric acid for removal of heavy metals from agricultural soil or tailing wastes is recognized to be an effective remediation method.

  • PDF

A Geochemical Study on the Dispersion of Heavy Metal Elements in Dusts and Soils in Urban and Industrial Environments (도시 및 산업환경 분진 및 토양중의 중금속 원소들의 분산에 관한 지구화학적 연구)

  • Chon, Hyo-Taek;Choi, Wan-Joo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.317-336
    • /
    • 1992
  • The garden soils, main road dusts, residential road dusts, and playground soils/dusts of Seoul, Geumsan, Onsan, and Taebaek areas were analyzed in order to investigate the level of heavy metal pollution by urbanization and industrialization. The soil pH is in the range of 5.48~8.40 and was generally neutral. The color of soils and dusts is mainly Raw Umber to dark greyish Raw Umber. Some samples from Taebaek city, a coal mining area, showed a deep black color due to contamination by coal dusts. Major minerals of the dusts and soils are quartz, feldspars, and micas, reflecting the composition of the parent rocks. However, pyrite was found as a major mineral in the samples of industrial road dusts of Onsan, a smelting area, and resicential road dusts of Taebaek. Thus, the high level of heavy metals in mining and smelting areas can be explained with the sulfide minerals. The mode of occurences of heavy metals in Seoul, a comprehensive urbanized area, were related to the metallic pollutants and organic materials through observation by scanning eletron microscopy. In main road and residential road dusts of Onsan area, Cd, Zn, and Cu were extremely high. Some industrial road and residential road dusts of Seoul area showed high Cu, Zn, and Pb contents, wereas some garden soils and residential road dusts of Taebaek area were high in As content. In general, the heavy metal contents in dust samples were two to three times higher than those in soil samples. Main road dust samples were the most reflective from the discriminant analysis of multi-element data. Cadmium, Sb, and Se in Onsan area, As in Taebaek area, Pb and Te in Seoul area were most characteristic in discriminating the studied areas. Therefore, Cd in smelting areas, As in coal mining areas, and Pb in metropolitan areas can be suggested as the characteristic elements of each pollution pattern. The dispersion of heavy metal elements in urban areas tends to orignate in main roads and deposit in garden soils through the atmosphere and residential roads. The heavy metal contamination in Seoul is characteristic in areas with high population, factory, road, and traffic decsities. Heavy metal contents are high in the vicinity of smelters in Onsan area and are decayed to background levels from one kilometer away from the smelters.

  • PDF

The study on bioaccumulation of heavy metals in the cultured Pacific oyster, Crassostrea gigas, along the coast of Tongyeong, Korea (통영연안 해역의 양식 참굴 (Crassostrea gigas) 의 중금속 농축에 관한 연구)

  • Cho, Sang-Man;Kim, Yeong-Hwan;Jeong, Woo-Geon
    • The Korean Journal of Malacology
    • /
    • v.25 no.3
    • /
    • pp.213-222
    • /
    • 2009
  • In order to investigate contamination of heavy metal in seawater and cultured oyster, samples were collected November 2003 to July 2004 from 12 sites (13 sites for seawater) along the coast of Tongyeong, Korea. The mean concentrations of metal in oyster tissues were as follows: 0.09 (0.01-0.3) ${\mu}g/l$ for Cd, 0.47 (0.01-1.4) ${\mu}g/l$ for Cr, 0.59 (0.2-2.3) ${\mu}g/l$ for Ni, 1.02 (0.1-4.2) ${\mu}g/l$ for Pb and 0.48 (0.01-3.9) ${\mu}g/l$ for Hg in the seawater, whereas 2.45 (0-5.47) mg/kgDW for Cd, 3.63 (0.10-12.91) mg/kgDW for Cr, 3.2 (0.01-15.73) mg/kgDW for Ni, 3.51 (0.01-6.47) mg/kgDW for Pb and 0.39 (0.004-0.74) mg/kgDW for Hg, respectively. Most metal concentration values were below the permissible range for the related regulations. Mean bioconcentration factors (BCF) for each metal were as follows: 38,964 (1,771-207, 171) for Cd, 9,583 (1,231-80, 162) for Cr, 191 (3-20, 980) for Ni, 1,416 (245-5, 207) for Pb and 180 (5-716) for Hg, respectively. The BCF values from this study corresponded to the transitional phase from the pristine to the contaminated waters. Notably, Cd showed the highest BCF, which suggest that the Pacific oyster could be utilized as a useful biomarker for Cd contamination in sea water. The multidimensional scaling analysis suggested that the metal contaminants are mainly originated from combustion of fossil fuel and accumulated to oyster through food web.

  • PDF