• Title/Summary/Keyword: Metal artifacts

Search Result 140, Processing Time 0.026 seconds

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

Study on the Re-corrosion Characteristics of Corrosion Products by Weeping of Iron Artifacts (철제유물 Weeping에 따른 부식화합물의 재부식 특성 연구)

  • Park, Hyung-Ho;Lee, Hye-Youn;Lee, Jae-Sung;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • Excavated iron objects are preserved in stable condition through processes of conservation treatment because they are found in the form of various corrosion products. However, the conservation treatment leads to re-corrosion over time and accordingly, iron objects can be severely damaged, and therefore fundamental measures need to be prepared to control it. In this study, the types and characteristics of corrosion products were scientifically analyzed according to the re-corrosion of iron artifacts. In addition, the stability of the corrosion products was evaluated by exposing the standard samples under the re-corrosion environment. Re-corrosion proceeded with weeping in reddish brown on the cracks of iron artifacts. Weeping was detected akagan$\acute{e}$ite had a low hydrogen ion concentration and high chloride ion. The selection of standard sample goethite, lepidocrocite, hematite, and magnetite, were evaluated corrosive by weeping. After the samples were immersed in HCl(pH 1), $H_2SO_4$(pH 1), $H_2O$(pH 6) solution, they had been maintained for 180 days in relative humidity of 20%, 50%, 80% to investiage the changes of chemical components. As a result of analysis, the changes of chemical components were not showed in goethite, lepidocrocite, and hematite. But magnetite was changed to lepidocrocite in solution including chloride ion($Cl^-$) and to goethite and lepidocrocite solution including sulfuric acid($SO{_4}^{2-}$). Results of the study, in the case of magnetite known as s stable corrosion compound, it was identified the corrosion of magnetite occurs by corrosive ions, which means weeping generated in the iron artifacts can corrode magnetite as well as base metal.

Identification and Removal of Pigments in Blood-colored Grooves of Long Sword, Admiral Yi Sun-sin (Treasure No. 326) (보물 제326호 이순신 장검 혈조 내 안료의 규명 및 제거)

  • Kwon, Hyuk Nam;Youn, Hye Seong;Ryu, Dong Wan;Lee, Jeong Won;Lee, Jang Jon;Han, Min Soo
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.499-506
    • /
    • 2015
  • The artifacts of Admiral Yi Sun-sin (Treasure No.326) consist of six items with two long swords, a jade decoration, a belt and two peach-shaped cups. In commemoration of the opening of Chungmugong Yi sun-sin Memorial Museum (April 28, 2011), there were conservation treatments for those artifacts at the beginning of 2011. At that time, from the result of non-destructive surface analysis on pigments in blood-colored grooves of the two long swords, it was presumed to be synthetic resin paints. This study shows the accurate identification on pigments which was presumed as synthetic resin paints and its removal. To identify pigments in blood-colored grooves, the optical microscope, scanning electron microscope, Micro-XRF, XRD and FT-IR were used for the analysis. The results turned out that the thickness of $10{\sim}90{\mu}m$ in a single layer was measured. And major components containing Pb and Cr and lead chromium molybdenum oxide were identified and to identify components of adhesives from the analysis by FT-IR, it turned out to be alkyd resin, which can be presumed that they were recently colored with synthetic paints. The synthetic paints easily react with most of the organic solvents. And it is so easy to handle without the effect on metal that it was removed with acetone. While removing synthetic paints, all of paints on it were collected for identifying whether there is traditional pigment but nothing was identified.

Comparative Study on Applicable Consolidants for Archival Objects of Copper Alloy (동합금 행정박물에 적용 가능한 표면강화처리제 비교 연구)

  • Park, Chang-Su;Cho, Hyun-Kyung;Cho, Nam-Chul;Kang, Dai-Ill
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.53-62
    • /
    • 2012
  • The archival objects are tangible evidence related to the public service. They are unique and offer information representing the specific events, time or person. The archival objects as modern cultural heritage do not have the guideline to classify, manage and conserve them. Especially, it is difficult to apply general conservation process for burial artifacts, because there are few study example of conservation for metal archival objects and they have complex administrative value. We tried to find suitable material and application method for consolidation of copper alloy archival object. We choose three kinds of wax and acrylic resin for burial artifacts and had done comparative analysis of their characterizations following kinds and coating methods. As a result of evaluation by several surface analysis such as optical microscope, measuring film thickness, adhesive strength, contact angle and yellowing test, acrylic resin can use to archival objects of copper alloy, effectively but the method of heating after dip-coating with Wax B used before can get best effect of consolidation.

Study on the Development and Property of Epoxy Putty with Excellent Low Shrinkage and Cutting Force Using Mercaptan Type and Diamine Type (Mercaptan계와 Diamine계를 이용한 저수축·절삭력이 우수한 Epoxy Putty의 개발 및 물성에 관한 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.137-145
    • /
    • 2015
  • This study aimed to develop epoxy putty as a multi-purpose connection and restoration material that can be used for material-specific restoration work such as metal, wood, ceramics, earthenware and stone artifacts by replacing synthetic resins currently being used for preservation treatment of cultural assets. Existing synthetic resins have the issue of cutting force resulting from high strength, deflection resulting from long hardening time, contaminating the surface of artifacts through staining on tools or gloves and need for re-treatment resulting from material discoloration. Accordingly, paste type restoration material most widely being used in the field of cultural assets preservation treatment was selected and examined the property to select it as an object of comparison. Based on such process, epoxy putty was developed according to the kind of agent, hardener and filler. For the purpose of solving the issues of existing material and allowing the epoxy putty developed to have similar property, property experiments were conducted by selecting agents and hardeners with different characteristics and conditions. The study findings showed that both kinds are paste type that improved work convenience and deflection issue as a result of their work time of within 5~10 minutes that are about 3~10 times shorter than that of existing material. In regards to wear rate for increasing cutting force, it improved by about 3 times, thereby allowing easy molding. For the purpose of improving the issue of surface contamination that occurs during work process, talc and micro-ballon were added as filler to reduce the issue of stickiness and staining on hand. Furthermore, a multi-purpose restoration material with low shrinkage, low discoloration and high cutting force was developed with excellent coloring, lightweight and cutting force features.

A study on the Cochlear View in Multichannel Cochlear Implantees (인공와우 이식술 환자의 Cochlear View 촬영에 관한 연구)

  • Kweon, Dae-Cheol;Kim, Jeong-Hee;Kim, Seong-Lyong;Kim, Hae-Seong;Lee, Yong-Woo
    • Journal of radiological science and technology
    • /
    • v.22 no.2
    • /
    • pp.27-32
    • /
    • 1999
  • Cochlear implant poses a contraindication to the magnetic resonance imaging(MRI) process, because MRI generates artifacts, inducing an electrical current and causing device magnetization. CT is relatively expensive and the metal electrodes scatter the image. Post-implantation radiological studies using anterior-posterior transorbital, submental-vertex and lateral views, the intracochlear electrodes are not well displayed. Therefore, the authors developed a special view, which we call the cochlear view. The patient is sitting in front of a vertical device. Then the midsagittal plane is adjusted to form an angle of $15^{\circ},\;30^{\circ}$, and $45^{\circ}$ with the film. The flexion of the neck is adjusted to make the infraorbitomeatal line(IOML) is parallel with the transverse axis of the film. The central ray is directed to exit from the skull at point which is 3.0 cm anterior and 2.0 cm superior to the EAM(external auditory meatus). Results have shown that single radiography of the cochlear view provides sufficient information to demonstrate the position of the electrodes array and the depth of insertion in cochlear. Radiography of the cochlear view in angle of $45^{\circ}$ is an excellent image. The cochlear view gives the greatest amount of medical information with the least radiation and lowest medical cost. It can be widely used in all cochlear implant clinics.

  • PDF

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

Simulation Methods of Electromagnetic Wave Specific Absorption Rate (SAR) and the Simulation Results of Human Head Model with Dental Implants in 5G Frequency Band (전자파 흡수율(SAR) 시뮬레이션 기법과 5G 주파수 대역에서의 인공 치아가 삽입된 인체 머리 모델의 전자파 흡수율 시뮬레이션 결과)

  • Kim, Chang-Gyun;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.854-857
    • /
    • 2018
  • It becomes important to analyze the effects of electromagnetic wave on human body, as various wireless equipments are widely used in daily life. SAR (specific absorption rate) is a parameter of the effects of electromagnetic wave on human body. However, it considers only human tissues, and it is difficult to evaluate the effects of electromagnetic wave when metal artifacts are inserted such as dental implants. This paper introduces a method to simulate SAR, and gets its simulated results. Simulated SAR of human head model with dental implants in 30 GHz 5th generation mobile communications (5G) frequency band is $2.50{\times}10^{-3}W/kg$ in maximum and $8.58{\times}10^{-7}W/kg$ in average. These values are absolutely below 1.6 W/kg Korean domestic SAR limit.

A Study of the Manufacturing Techniques of the Horse Trappings with Jewel Beetle Adornment Excavated from Geumgwanchong Tomb (비단벌레 날개를 중심으로 본 금관총 출토 비단 벌레장식 마구류의 제작 기법 연구)

  • Lee, Seungryul;Jeong, Kukhui;Shin, Yongbi
    • Conservation Science in Museum
    • /
    • v.18
    • /
    • pp.1-18
    • /
    • 2017
  • This study investigated the techniques applied in the manufacturing of the horse trappings with jewel beetle adornment excavated from Geumgwanchong Tomb, with a focus on the use of jewel beetle wings. It is revealed that the wings of jewel beetles were stripped of their upper skeletal parts and applied as ornamentation under the gilt-bronze openwork plate, and no additional process was applied to improve adhesion. The horse trappings from Geumgwanchong Tomb include saddles, stirrups, horse strap pendants, and bamboo mudguards, but most of the components except the stirrups are failing or lost, making it difficult to identify the manufacturing techniques. The techniques used to affix the jewel beetle wings vary depending on the support materials. Small chisels were used to fix the jewel beetle wings to the stirrups and saddle made of wooden supports. In the case of the bamboo mudguards and metal artifacts, the wings were fixed with lacquer and then combined with the gilt-bronze openwork plate using pressure.

Optimization of exposure parameters and relationship between subjective and technical image quality in cone-beam computed tomography

  • Park, Ha-Na;Min, Chang-Ki;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.139-151
    • /
    • 2019
  • Purpose: This study was performed to investigate the effect of exposure parameters on image quality obtained using a cone-beam computed tomography (CBCT) scanner and the relationship between physical factors and clinical image quality depending on the diagnostic task. Materials and Methods: CBCT images of a SedentexCT IQ phantom and a real skull phantom were obtained under different combinations of tube voltage and tube current (Alphard 3030 CBCT scanner, 78-90 kVp and 2-8 mA). The images obtained using a SedentexCT IQ phantom were analyzed technically, and the physical factors of image noise, contrast resolution, spatial resolution, and metal artifacts were measured. The images obtained using a real skull phantom were evaluated for each diagnostic task by 6 oral and maxillofacial radiologists, and each setting was classified as acceptable or unacceptable based on those evaluations. A statistical analysis of the relationships of exposure parameters and physical factors with observer scores was conducted. Results: For periapical diagnosis and implant planning, the tube current of the acceptable images was significantly higher than that of the unacceptable images. Image noise, the contrast-to-noise ratio (CNR), the line pair chart on the Z axis, and modulation transfer function (MTF) values showed statistically significant differences between the acceptable and unacceptable image groups. The cut-off values obtained using receiver operating characteristic curves for CNR and MTF 10 were useful for determining acceptability. Conclusion: Tube current had a major influence on clinical image quality. CNR and MTF 10 were useful physical factors that showed significantly associations with clinical image quality.