• Title/Summary/Keyword: Metal alloy

Search Result 1,893, Processing Time 0.03 seconds

Study on the Addition and the Transfer of Alloying Elements in FCAW (FCAW에 의한 합금 성분의 첨가와 이행에 관한 연구)

  • 김경중;박관호
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 1983
  • The chemical composition of deposit metal by flux cored arc welding can be easily regulated though addition of deoxidizers and alloying elements in cored flux and fluxes of flux coored wire arc analogous to those of coated electrode. It is necessary to investigate the transfer and yield efficiency due to addition of necessary alloy elements in deposit metal. This report is made to intorduce an experimental equation from the relation between welding condition and extent of penetration, deposit metal and weld melt slag and to estimate transfer and yield efficiency of alloy components in fluxes through chemical analysis of deposit metal.

  • PDF

Microstructural Modification of High-Fe Containing A356 Alloy by Liquid Metal Shearing Process (용융금속 교반공정을 통한 고Fe 함유 A356 합금의 미세조직 개질)

  • Kim, Bong-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.354-361
    • /
    • 2011
  • The liquid metal shearing device was constructed and assembled with a commercial high-pressure die-caster in order to induce intensive turbulent shearing force on molten aluminum alloys. The effect of the liquid metal shearing on the microstructure and tensile properties of A356 alloys was investigated with the variation of iron content. The experimental results show that dendritic primary ${\alpha}$-Al phase was effectively modified into a equiaxed form by the liquid metal shearing. It was also found that the needle-like ${\beta}$-AlFeSi phase in a Fe containing A356 alloy was changed into a blocky shape resulting in the improved mechanical properties. Based on the mechanical properties, it was suggested that the iron content in A356 alloy could be more widely tolerated by utilizing the liquid metal shearing HPDC process.

Effect of metal primer and thermocycling on shear bonding strength between the orthodontic bracket and gold alloy (치과용 금합금에 대한 금속 프라이머 처리와 열순환 처리가 교정용 브라켓의 전단결합강도에 미치는 영향)

  • Lee, Young-Kee;Cha, Jung-Yul;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.320-329
    • /
    • 2009
  • Objective: The aim of this study was to evaluate the effect of metal primers and thermocycling on shear bond strength between the orthodontic bracket and gold alloy. Methods: For this study, 80 specimens made of dental gold alloy were divided into 8 groups based on the combination of metal primers (none, Alloy primer, Metaltite, V-primer) and thermocycling (with and without thermocycling). Shear bond strength testing was performed with a universal testing machine. Bond failure sites were classified by a modified ARI (Adhesive Remnant Index) score. Results: All metal primer treated groups showed a significantly higher shear bond strength than the only sandblasting treated group without thermocycling (p < 0.05). There were no significant differences on shear bond strength in the groups with thermocycling (p > 0.05). Bond failure sites of the metal primer treated group without thermocycling occurred at gold alloy/adhesive interface, whereas there were no differences on bonding failure sites in the groups with thermocycling. Conclusions: These findings suggest that using metal primer on gold alloy enhances the initial bracket bond strength. But, this effect was not shown with thermocycling.

A study on the marginal fitness to reuse with a Au-Pt-Pd alloy for porcelain fused to metal crown (도재용 금합금 재사용에 따른 변연 적합도에 관한 연구)

  • Moon, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.32 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • This experimental study was to determine the fitness in each cervical margin of reusing porcelain gold alloy. The gold alloy used in this experimental study was a Au-Pt-Pd alloy (BDCG-898, Bukwang Inc, Korea) for the fabrication of porcelain fused to metal crown. Twenty-five copings were divided into the five groups. And the group A, B, C, D and E were cording successively according to the frequency of reuse to five times. Each specimen was reused without adding new metal. The experimental results were as follows: 1. The group A, B, C showed good fitness in each cervical margin. 2. The group D got good fitness in labio and linguo cervical margin, but the mesio and disto cervical margin showed more than $40{\mu}m$ 3. The group E showed worse fitness than the other groups in each cervical margin.

A Study of Prevention of Heat Pipe Scale with Copper Alloy Metal (Copper Alloy Metal Fiber를 이용한 Heat pipe 표면의 스케일 제거에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Kim, Eun-Hee;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.434-439
    • /
    • 2009
  • This paper is a new method for prevent. The particulate scale. stero-microscope were used for the scale removal experiment to improve mineralogical characteristics and the reduction of scales in heat pipe. Generally, the scale in the heat pipe consists of calcium carbonate minerals, such as calcite and aragonite which are precipitated by the reaction of Ca and $CO_2$ in the water. Copper alloy metal could eliminate the scale and prevent the production of scale in the heat pipe.

Weighing control of alloy metal for electric arc furnace by fuzzy system (퍼지 시스템을 사용한 전기로 합금철 계량 제어)

  • Lee, Gi-Bum;Heo, J.H.;Joo, Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.821-825
    • /
    • 2008
  • A fuzzy control algorithm is used to weigh alloy metal into electric arc furnace and implemented by using ladder program for programmable logic controller, where weight error and its derivative are used for input variables and vibration amplitude of alloy bin is used for output variable. Proposed fuzzy control algorithm is applied to the plant and results in higher measuring accuracy as well as faster measuring term than conventional on-off control system.

The study on Comparison Evaluation of Shear Bond Strength of Co-Cr Based Alloy using for Porcelain Fused Metal (도재용착주조관용 Co-Cr계 비귀금속 합금의 전단결합강도 비교평가에 관한 연구)

  • Kim, Hee-Jin;Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.32 no.3
    • /
    • pp.195-207
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the microstructural changes of surface in the specimens, performing the shear bond strength testing. The currently most used non-precious alloys are nickel-chromium based alloys with or without beryllium. However, their biocompatibility has been questioned concerning possible damages to the health of the patient and professionals involved in the fabrication of prosthesis caused by long exposure to Ni and Be. An option to nickel-chromium alloys is the cobalt-chromium alloy, an alternative that does not sacrifice the physical properties of the metal porcelain systems. Studies in the animals substantially show that the cobalt-chromium alloys are relatively well tolerated, being therefore more biocompatible than the nickel-chromium alloys. Methods: Non-addition Be to nickel-chromium based alloy(Bellabond plus) and cobalt-chromium alloy which has been widely used(Wirobond C) fused with ZEO light porcelain classified control group and cobalt-chromium alloy which is developing alloy of Alphadent company in Korea(Alphadent alloy) fused with ZEO light porcelain classified experimental group. The specimens of $4mm{\times}4mm{\times}0.5mm$ were prepared as-cast and as-opaque to cast body to analyze the mechanical characteristic change, the microstructure of alloy surface. The phase change was used to observe through XRD analysis and OM/SEM was used to observe the surface of specimens as-cast and as-opaque to cast body. Chemical formation of their elements was measured with EDS. Then hardness was measured with Micro Vicker's hardness tester. Shear bond strength test thirty specimens of $10mm{\times}10mm{\times}2mm$ was prepared, veneered, 3mm high and 3mm in diameter, over the alloy specimens. The shear bond strength test was performed in a universal testing machine(UTM) with a cross head speed of 0.5mm/min. Ultimate shear bond strength data were analyzed with one-way ANOVA and the Scheffe's test (P<0.05). Within the limits of this study, the following conclusions were drawn: The X-ray diffraction analysis results for the as-cast and as-opaque specimens showed that the major relative intensity of Bellabond plus alloy were changed smaller than Wirobond C and Alphadent Co-Cr based alloys. Results: Microstructural analysis results for the opaque specimens showed all the alloys increased carbides and precipitation(PPT). Alphadent Co-Cr based alloy showed the carbides of lamellar type. The Vickers hardness results for the opaque specimens showed Wirobond C and Alphadent Co-Cr based alloys were increaser than before ascast, but Bellabond plus alloy relatively decreased. The mean shear bond strengths (MPa) were: 33.11 for Wirobond C/ZEO light; 25.00 for Alphadent Co-Cr alloy/ZEO light; 18.02 for Bellabond plus/ZEO light. Conclusion: The mean shear bond strengths for Co-Cr and Ni-Cr based alloy were significantly different. But the all groups showed metal-metal oxide modes in shear bond strengths test at the interface.

A STUDY ON THE BOND STRENGTH OF HEAT-CURING ACRYIC RESIN BONDED TO A SURFACE OF CASTED ALLOY (주조 금속 표면과 열 중합 수지 표면간의 결합 강도에 관한 연구)

  • Lee, Yong-Seok;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.620-631
    • /
    • 1996
  • Bonding of resin to cast alloy has traditionally been provided by mechanical retention. But, chemical bonding methods such as silicoating, tin plating, heat treatment, application of 4-META adhesives, have been developed to overcome the problems of the mechanical bonding methods. Silicoating has been used availaby in fixed prosthodontics, but is also reported to be used in removable prosthodontics. The aim of this study is to measure the tensile bond strength between resin and metal, and compare the effect of the type of metal and the grain size of the aluminum oxide on the bond strength, after metal surface roughening, coating of the opaque resin, and curing of heat-curing resin were performed. The test groups were divided into 4 groups according to the cast alloys and the aluminum oxide particles used. Group 1 : Type 4 gold alloy(DM66) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 2 : Type 4 gold alloy(DM66) blasted with $$250{\mu}m\;Al_{2}O_3$$, Group 3 : Co-Cr alloy(Nobilium) blasted with $$50{\mu}m\;Al_{2}O_3$$ Group 4 : Co-Cr alloy(Nobilium) blasted with $$250{\mu}m\;Al_{2}O_3$$ * 10 test specimens were made on each group. The specimens were thermocycled, and Instron Universal testing machine was used to measure the tensile bond strength of the finished specimens. The results were as follows : 1. Bond strengths showed that the group of gold alloy blasted with $250{\mu}m$ aluminum oxide particle had higher bond strength, and the group of gold alloy blasted with $50{\mu}m$ aluminum oxide particles had lower bond strength than any of the other groups. 2. Gold alloy had significantly higher bond strength when blasted with $250{\mu}m$ aluminum oxide particles than $50{\mu}m$, but. Co-Cr alloy showed no statistically significant difference between the two particle sizes. 3. When blasted with $50{mu}m$ aluminum oxide particles, Co-Cr alloy showed significantly higher bond strength than gold alloy. And, when blasted with $250{\mu}m$ aluminum oxide particles, gold alloy had significantly higher bond strength than Co-Cr alloy. 4. On the examination of the fractured sites, only the group of Co-Cr alloy blasted with $50{\mu}m$ aluminum oxide particles showed a part of residual opaque resin, but all the samples of the other groups fractured between the resin and the metal.

  • PDF

Comparison of shearbond strength between metal and indirect resin according to the different conditionings (표면처리에 따른 금속과 간접복합레진간의 전단결합강도 비교연구)

  • Choi, Su-Young;Choi, Hyunmin;Moon, Hong-Seok;Shim, June-Sung;Park, Young-Bum;Lee, Geun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • Purpose: The purpose of this study is to investigate the differences in bond strength of four different indirect composites to the gold alloy and Ni-Cr alloy according to type of metal surface treatment after water storage. Materials and methods: Type IV gold alloy and Ni-Cr alloy were used for casting alloy while four types of indirect composite resins (Gradia, Tescera Sinfony and in;joy) were used in this study. Metal specimens were produced by casting and total of 240 specimens (60 specimens per one indirect composite group) were prepared. After bonding indirect composite resin and undergoing 24 hours of polymerization, customized jig was attached to the metal specimen and shear bond strength were measured using universal testing machine. Also, differences in shear bond strength before and after water storage for 240 hours were also measured. Results: In the measurement of shear bond strength according to the metal surface treatments, bead group showed high strength followed by loop and flatting group (P<.05). After being stored in water bath for 240 hours, Gradia showed statistically significant high bond strength compared to other indirect composite resins in all groups (P<.05). Conclusion: Shearbond strength was found to be different according to type of metal surface treatment and type of metal used after storage in water. Further studies need to be developed for clinical practices as three are still problems of microleakage, stain or wear.

BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN ACCORDING TO ADHESIVE PRIMERS (금속표면처리제에 따른 코발트-크롬 합금과 의치상용 레진의 결합강도)

  • Park, Jong-Il;Kwon, Ju-Hong;Lee, Hae-Hyeung;Cho, Hay-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2000
  • This study evaluated the effects of four adhesive metal primers on the shear bond strength of a heat curing denture base resin(Lucitone 199) to cobalt-chromium alloy(Biosil-f). The adhesive metal primers were Cesead Opaque Primer, Metal Primer, MR Bond, and Super-Bond liquid. The metal surface primed or nonprimed was filled with the heat-curing methyl methacrylate resin. The specimens were stored in water at $37^{\circ}C$ for 24 hours and the alternately immersed in water bath at $5^{\circ}C\;and\;55^{\circ}C$ for up to 2,000 thermal cycles. Shear bond strengths were measured using UTM at a crosshead speed of 0.5mm/min. Failure surface were examined under magnifying glasses. All the primers examined improved the shear bond strength between denture base resin and cobalt-chromium alloy compared with nonprimed specimens before thermal cycling. The bond strength of Cesead Opaque Primer was greatest. And after 2,000 thermal cycles, the bond strengths between resin and cobalt-chromium alloy were decreased but the difference between thermal cycling 0 and 2,000 at Cesead Opaque primer and Metal Primer were not significant. This study indicated that Cesead Opaque Primer & Metal Primer is effective primers to obtain higher bond strength between heat cured denture base resin and cobalt-chromium alloy.

  • PDF