• 제목/요약/키워드: Metal Transfer

검색결과 958건 처리시간 0.029초

GMAW 용적이행 현상에 미치는 Ca의 영향 (Effect of Ca on Droplet Transfer Phenomena in GMA Welding)

  • 안영호;방국수;이종봉;장내웅
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.76-84
    • /
    • 1994
  • Droplet transfer modes due to welding conditions and the effect of Ca in welding wire on droplet transfer were investigated. Droplet transfer mode in CO$_{2}$ welding was classified into 2 modes, that is, short circuit and globular transfer, with increasing welding current and voltage. With increasing Ca content in wire, repulsive pressure due to vaporization of Ca was considerably increased. In short circuit transfer region, arcing time was increased and droplet transfer cycle was decreased, with increasing Ca content. In globular transfer region, welding condition for globular transfer was lower current region, with increasing Ca content.

  • PDF

열전달 촉진을 위한 탄소나노튜브(CNT)/금속 복합체 소결 코팅에 관한 연구 (A Study on the Sinterning of the Carbon Nanotube/Metal Composites for the Heat Transfer Enhancement)

  • 정희여;김민수;박찬우
    • Composites Research
    • /
    • 제26권6호
    • /
    • pp.373-379
    • /
    • 2013
  • 냉매의 비등이나 응축같은 열전달 향상을 위하여 금속 표면위에 탄소나노튜브(CNT)를 코팅하는 것을 연구하였다. 다중벽 탄소나노튜브/구리 복합소재는 어트리션 볼밀에 의해서 제작되었으며, 정전 도장 장치로 복합 분말을 구리 기판위에 코팅한 후 전기로에서 소결하였다. 본 논문에서는 CNT/Cu 코팅 표면의 분석 및 소결전후의 탄소나노튜브의 변화를 파악하기 위하여 샘플들을 주사전자현미경, EDAX, 라만분광법에 의해 분석하였다. 아울러 열전달 촉진은 비등열전달로 확인하였다.

터보냉동기용 만액식 증발기에 사용되는 성형가공관의 풀비등 성능 (Pool boiling performance of an enhanced tube used in flooded refrigerant evaporator for turbo-refrigerator)

  • 김태형;김내현
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.808-814
    • /
    • 1999
  • Pool boiling performance of a metal-formed enhanced tube for a flooded refrigerant evaporator was experimentally investigated. Tests were performed for three different refrigerants(R-11, R-123, R-l34a), at two different saturation temperatures $4.4^{\circ}C \;and \;26.7^{\circ}C$ .Heat flux was varied from 10㎾/$m^2\;to\ 50㎾/$m^2$. Compared with the heat transfer coefficients of the smooth tube, the heat transfer coefficients of the enhanced tube were 6.6 times higher for R-11, 6.0 tines higher for R-123 and 3.5 times higher for R-l34a. The enhancements are comparable with those of foreign products. The heat transfer coefficients of R-l34a were higher than those of R-11 and R-123, either for the enhanced tube or for the smooth tube. At $4.4^{\circ}Csaturation temperature, however, the heat transfer coefficients of R-l34a were approximately the same as those of R-11, The effect of the saturation pressure on the boiling performance was similar to that of the smooth tube - the heat transfer coefficient increases as the saturation pressure increases.

  • PDF

Deposition of Fine Linewidth Silver Layer using a Modified Laser-induced Forward Transfer Technique

  • Cheon, Jonggyu;Nguyen, Manh-Cuong;Nguyen, An Hoang-Thuy;Choi, Sujin;Ji, Hyung-Min;Kim, Sang-Woo;Yu, Kyoung-Moon;Kim, Jin-Hyun;Cho, Seong-Yong;Choi, Rino
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1279-1282
    • /
    • 2018
  • This paper reports the deposition of a metal line using a multilayer stack and laser-induced forward transfer (LIFT) using a low cost continuous wave blue laser with a wavelength of 450 nm. The donor structure was composed of a light-to-heat (LTH) layer, a release layer, and a transfer layer in series. Amorphous silicon as the LTH layer absorbs photon energy and converts it to heat. A release layer was melted so that a silver transfer layer would be transferred to the receiver substrate. The transferred silver layer showed reasonable physical and electrical characteristics. A low cost fine linewidth metal layer could be achieved using this modified LIFT technique and blue laser.

가스 메탈 아크 용접에서 단락현상 모델링 및 스패터 감소를 위한 전류파형 선정에 관한 연구 (A Study on Modeling of Short-Circuliting Phenomena and Selection of Current Waveform for Reduction of Spatter in GMAW)

  • 황주호;문형순;나석주;한광수
    • Journal of Welding and Joining
    • /
    • 제14권1호
    • /
    • pp.57-67
    • /
    • 1996
  • With an expansion in automation of welding processes, emphasis has been shifted from other welding processes to the GMA welding. However, there is a problem with this process that the spatter occurs very frequently. In GMA welding, there are several types in the way of metal transfer from the electrode wire to the weld pool, which have a close relatonship with the spatter genetration. This study was concerned with the spatter occurring in the short-circuiting transfer. In welding with short-circuiting, the electromagnetic force formed by the welding current facilitatics the rupture of the metal bridge between the wire and workpiece and ensures the normal process of the welding process. However, the spatter can be genetrated from the droplet because of the upward magnetic force, when the droplet contacts with the weld pool. The passage of current through the bridge results in the accumulation of the thermal energy, which causes the bridge to explode in the final stage of short-circuiting, thus forming the spatter. Based on the above phenomena in conjunction with other experimental results published, the physical phenomenon related with the occurrence of spatter was modeled and the current waveform was investigated to reduce the spatter. Finally, the fuzzy rule based method was proposed to predict the time of short-circuiting and arcing in the metal transfer.

  • PDF

미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발 (Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads)

  • 서한나;이민희;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권4호
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.

내부에 히트파이프를 삽입한 메탈 하이드라이드 반응기의 열전달 특성에 대한 수치해석 연구 (A Numerical Study on the Heat Transfer Characteristics of a Metal Hydride Reactor with Embedded Heat Pipes)

  • 박영학;부준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2346-2351
    • /
    • 2008
  • This study deals with heat pipes inserted into the metal hydride(MH) reactor to increase the effective thermal conductivity of the system and thus to enhance the thermal control characteristics. A numerical analysis was conducted to predict the effect of inserted heat pipes on the heat transfer characteristics of MH, which inherently has extremely low thermal conductivity. The numerical model was a cylindrical container of O.D. 76.3 mm and length 1 m, which is partially filled with about 60% of MH material. The heat pipe was made of copper-water combination, which is suitable for operation temperature range between $10^{\circ}C$ and $80^{\circ}C$. Both inner -and outer- heat pipes were considered in the model. Less than two hours of transient time is of concern when decreasing or increasing the temperature for absorption and discharge of hydrogen gas. FLUENT, a commercial software, was employed to predict the transient as well as steady-state temperature distribution of the MH reactor system. The numerical results were compared and analyzed from the view point of temperature uniformity and transient time up to the specified maximum or minimum temperatures.

  • PDF

금속재질 열교환기의 지중 열교환 효율에 관한 연구 (Study on Efficiency for Underground Heat Transfer of Metal Heat Exchanger)

  • 송재용;김기준;안상곤;김진성;정교철
    • 지질공학
    • /
    • 제25권1호
    • /
    • pp.131-148
    • /
    • 2015
  • 본 연구는 지열시스템 열교환 효율의 개선방안을 모색하기 위한 것으로 금속재질의 열교환기인 동관 및 스테인레스관과 기존 지열시스템에 많이 적용되는 PE관을 이용하여 지열열교환기의 재질에 따른 열전달 효율을 비교 분석하였다. 또한 지하매질의 지하수에 포함되어 있는 지하수열을 동시 활용할 경우의 열전달 효율 변화를 평가하고 그 적용성을 검토하였다. 열교환기 내의 유속, 유량 및 열교환기의 구경을 조절함으로써 열교환기의 재질에 따른 열전달 효율을 평가 후 현장실증시험 설계인자를 도출하였다. 열교환 효율과 유효 열전도도는 현장 열전달 효율 시험 및 열응답 시험을 통해 변화양상을 분석하였다. 분석결과 금속재질이 PE관에 비해 높은 열전달 효율을 보였으며, 유량에서의 구경증대에 따른 열전달효율은 크지 않았으나 유속에서의 구경증대에 따른 열전달효율은 높아지는 것을 확인하였다.

An Experimental Study of Valve Seat Material Galling Characteristics in Waterworks

  • Park, Sung-Jun;Kim, Young-Tae;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권1호
    • /
    • pp.46-51
    • /
    • 2007
  • Environmental contamination creates shortages of potable water. In such situations, the leakage of water due to breakage or aging of rubber valve seats is a serious problem. Rubber is apt to break when it is placed between two materials that contact each other. One way to avoid water leakage due to rubber damage and breakdown is to replace the rubber with metal, which is currently taking place in water distribution systems. In tribology, a severe form of wear is characterized by local macroscopic material transfer or removal, or by problems with sliding protrusions when two solid surfaces experience relative sliding under load. One of the major problems when metal slides is the occurrence of galling. Experimentally, various conditions influence incipient galling, such as hardness, surface roughness, temperature, load, velocity, and the external environment. This study sought to verify the galling tendencies of metal according to its hardness, surface roughness, load, and sliding velocity, and determine the quantitative effect of each factor on the galling tendencies.

Feasibility Study of the Decay Heat Removal Capability Using the Concept of a Thermosyphon in the Liquid Metal Reactor

  • Kim, Yeon-Sik;Sim, Yoon-Sub;Kim, Eui-Kwang
    • 에너지공학
    • /
    • 제10권4호
    • /
    • pp.342-348
    • /
    • 2001
  • A new design concept for a decay heat removal system in a liquid metal reactor is proposed. The new design utilizes a thermosyphon to enhance the heat removal capacity and its heat transfer characteristics are analyzed against the current PSDRS (Passive Safety Decay heat Removal System) in the KAL IMER (Korea Advanced LIquid MEtal Reactor) design. The preliminary analysis results show that the new design with a thermosyphon yields substantial increase of 20∼40% in the decay heat removal capacity compared to the current design that do not have the thermosyphon. The new design reduces the temperature rise in the cooling air of the system and helps the surrounding structure in maintaining its mechanical integrity for long term operation at an accident. Also the analysis revealed the characteristics of the interactions among various heat transfer modes in the new design.

  • PDF