Browse > Article
http://dx.doi.org/10.3938/jkps.73.1279

Deposition of Fine Linewidth Silver Layer using a Modified Laser-induced Forward Transfer Technique  

Cheon, Jonggyu (Department of Materials Science and Engineering, Inha University)
Nguyen, Manh-Cuong (Department of Materials Science and Engineering, Inha University)
Nguyen, An Hoang-Thuy (Department of Materials Science and Engineering, Inha University)
Choi, Sujin (Department of Materials Science and Engineering, Inha University)
Ji, Hyung-Min (Department of Materials Science and Engineering, Inha University)
Kim, Sang-Woo (Department of Materials Science and Engineering, Inha University)
Yu, Kyoung-Moon (Department of Materials Science and Engineering, Inha University)
Kim, Jin-Hyun (Department of Materials Science and Engineering, Inha University)
Cho, Seong-Yong (Department of Materials Science and Engineering, Inha University)
Choi, Rino (Department of Materials Science and Engineering, Inha University)
Abstract
This paper reports the deposition of a metal line using a multilayer stack and laser-induced forward transfer (LIFT) using a low cost continuous wave blue laser with a wavelength of 450 nm. The donor structure was composed of a light-to-heat (LTH) layer, a release layer, and a transfer layer in series. Amorphous silicon as the LTH layer absorbs photon energy and converts it to heat. A release layer was melted so that a silver transfer layer would be transferred to the receiver substrate. The transferred silver layer showed reasonable physical and electrical characteristics. A low cost fine linewidth metal layer could be achieved using this modified LIFT technique and blue laser.
Keywords
Laser-Induced Forward Transfer; Light absorb layer; 450 nm wavelength continuous laser;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. S. M. Werner, K. Glantschnig and C. Ambrosch-Draxl, Journal of Physical and Chemical Reference Date 38, 1013 (2009).   DOI
2 M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist and M. R. Querry, Applied Optics 27, 1203 (1988).   DOI
3 D. T. Pierce and W. E. Spicer, Phys. Rev. B 5, 3017 (1972).   DOI
4 M. R. Querry, Optical constants of minerals and other materials from the millimeter to the ultraviolet (1987).
5 K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. lotti et al., ACS Photonics 2, 326 (2015).   DOI
6 J. Bohandy, B. F. Kim and F. J. Adrian, Journal of Applied Physics 60, 1538 (1986).   DOI
7 M. Zenou, A. Sa'ar and Z. Kotler, small 11, 4082 (2015).   DOI
8 Z. Kantor, Z. Toth and T. Szorenyi, Applied Physics Letters, 64, 3506 (1994).   DOI
9 I. Zergiotia, S. Mailisa, N. A. Vaionosa, C. Fotakisa, S. Chenb and C. P. Grigorpoulosb, Applied Surface Science 127-129, 601 (1998).   DOI
10 M. L. Tseng, C. M. Chang, B. H. Chen, Y. W. Huang, C. H. Chu et al., Nanotechnology 23, 444013 (2012).   DOI
11 C. Constantinescu, A. K. Diallo, L. Rapp, P. Cremillieu, R. Mazurczyk et al., Applied Surface Science, 336, 11 (2015).   DOI
12 L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackemann, F. Fages and P. Delaporte, Applied Physics Letters 95, 171109 (2009).   DOI
13 M. Zenou, A. Sa'ar and Z. Kotler, Journal of Physics D: Applied Physics 48, 205303 (2015).   DOI
14 A. I. Kuznetsov, R. Kiyan and B. N. Chichkov, Optical Society of America 18, 21198 (2010).
15 Z. Galazka, R. Uecker and R. Fornari, Journal of Crystal Growth 388, 61 (2014).   DOI
16 J. Lopez-Vidrier, S. Lauzurica, D. Canteli and M. Llusca, Journal of Luminescence 185, 112 (2017).   DOI
17 P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).   DOI