• Title/Summary/Keyword: Metal Temperature

Search Result 4,832, Processing Time 0.045 seconds

An Analysis on the Temperature Distribution at the Circumferential Weld Zone (원통 용접부의 온도분포 해석)

  • NamKoong, Chai-Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.221-227
    • /
    • 2009
  • The study of the solidification process of welded metal is carried out using the finite element method, which is the basic study for optimal design. In the analysis of temperature, the welded zone is cooled as the result of heat conduction to the base metal and heat transfer to the circumference. In the early phase of the temperature in base metal zone is little changed. But after the rise in temperature the whole area is cooled gradually and uniformly with the lapse of 10 seconds, and a temperature change is hardly occurred in the radial direction but in the axial direction.

Structural Analysis of Low Temperature Processed Schottky Contacts to n-InGaAs (저온공정 n-InGaAs Schottky 접합의 구조적 특성)

  • 이홍주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.533-538
    • /
    • 2001
  • The barrier height is found to increase from 0.25 to 0.690 eV for Schottky contacts on n-InGaAs using deposition of Ag on a substrate cooled to 77K(LT). Surface analysis leads to an interface model for the LT diode in which there are oxide compounds of In:O and As:O between the metal and semiconductor, leading to behavior as a metal-insulator-semiconductor diode. The metal film deposited t LT has a finer and more uniform structure, as revealed by scanning electron microscopy and in situ metal layer resistance measurement. This increased uniformity is an additional reason for the barrier height improvement. In contrast, the diodes formed at room temperature exhibit poorer performance due to an unpassivated surface and non-uniform metal coverage on a microscopic level.

  • PDF

Fabrication of Nano-sized Metal Dispersed Magnesia Based Composites and Related Mechanical and Magnetic Properties

  • Choa, Yong-Ho;Tadachika Nakayama;Tohru Sekino;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.395-399
    • /
    • 1999
  • MgO/metal nanocomposite powder mixtures were prepared by solution chemical processes to obtain suitable structure for ceramic/metal nanocomposites. Nickel or cobalt nitrate, as a source of metal dispersion, was dissolved into alcohol and mixed with magnesia powder. After calcined in air, these powders were reduced by hydrogen. Densified nanocomposites were successively obtained by Pulse Electric Current Sintering (PECS) process. The dispersed metal partical size depended on temperature and time in calcination and reduction processes. The phase analyses in the synthesized powders as a functioni of temperature were tracked using a dynamic high temperature X-ray diffractioni (HTXRD) system. Phase and crystallite size analyses were done using X-ray diffractioni and TEM. The MgO/metal nanocomposites were successfully fabricated, and ferromagnetic responses with enhanced coercive force were also investigated for these composites.

  • PDF

Evaluation of High Temperature Strength Characteric in Joint Metal (접합재의 고온강도 특성 평가)

  • Huh, Sun-Chul;Park, Young-Chul;Yun, Han-Ki;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.103-108
    • /
    • 2000
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress development when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of $Si_3N_4/STS304$ joints quantitatively and to compare the strength of Joints. The difference of residual stress is measured when repeated thermal cycle is loaded under the conditions of the practical use of the ceramic/metal joint. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a residual it is known that the stress of joint decreases as the number of thermal cycle increases.

  • PDF

An Isothermal Temperature Source with a Large Surface Area using the Metal-Etched Microwick-Inserted Vapor Chamber Heat Spreader

  • Go, Jeong-Sang;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.681-688
    • /
    • 2004
  • For use of the thermal cycle of the biochemical fluid sample, the isothermal temperature source with a large surface area was designed, fabricated and its thermal characterization was experimentally evaluated. The comprehensive overview of the technology trend on the temperature control devices was detailed. The large surface area isothermal temperature source was realized by using the vapor chamber heat spreader. The cost-effectiveness and simple manufacturing process were achieved by using the metal-etched wick structure. The temperature distribution was quantitatively investigated by using IR temperature imaging system at equivalent temperatures to the PCR thermal cycle. The standard deviation was measured to be within 0.7$^{\circ}C$ for each temperature cycle. This concludes that the presented isothermal temperature source enables no temperature gradient inside bio-sample fluid. Furthermore it can be applied to the cooling of the electronic devices due to its slimness and low thermal spreading resistance.

Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints (세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포)

  • 박영철;허선철;윤두표;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal (다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향)

  • Bang, Kook-soo;Jung, Ho-shin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

Improvement of the mechanical properties of titanium carbonitride-metal composites by modification of interfaces (계면 개선을 통한 타이타늄 탄/질화물 금속 복합재료의 기계적 물성 향상)

  • Kwon, Hanjung
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.114-131
    • /
    • 2020
  • Fracture in the titanium carbonitride-metal composites occurs by crack propagation through the carbonitride grains or in the interfaces. Thus, intrinsic properties of the carbonitride need to be enhanced and the interfaces should be also modified to coherent structure to strengthen the composites. Especially, interfacial structure can be the main factor to determine the mechanical properties of titanium carbonitride-metal composites because the interfaces between carbonitride grains and metallic phase are weak parts due to heterogeneous nature of carbonitride and metallic phase. In this paper, methodologies for improving the interfacial structure of titanium carbonitride-metal composites are suggested. Total area of the interfaces can be reduced using solid solution type carbonitrides as raw materials instead of a mixture of various carbonitrides in the composites. Also, synthesis of titanium carbonitride-metal composite powders and the low-temperature sintering of the composite powders for short time can be the way for formation of coherent interfaces. The sintering of the composite powders for short time at low temperature can reduce the potential of formation of interfaces by dissolution and precipitation of carbonitride in the liquid metal. As a result of formation of coherent boundaries due to low-temperature and short-time sintering, interfaces between titanium carbonitride grains and metallic phase have the favorable structure for the enhanced fracture toughness. It is believed that the low-temperature sintering of solid solution type composite powders for short time can be the way to improve the low toughness of the titanium carbonitride-metal composites.

Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed (금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발)

  • Nam, Jinmoo;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

Fiber-optic Temperature Sensor Based on Bending Loss of Thermally Expanded Core Fiber (열확장 코어 광섬유의 구부림 손실을 이용한 광섬유형 온도 센서)

  • Kim, Kwang-Taek;Kang, Ji-Hoon;Cho, Kyu-Jung;Moon, Nam-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.12-15
    • /
    • 2010
  • In this paper, we have proposed and demonstrated a simple fiber-optic temperature sensor based on the bending loss of a TEC(thermally expended core) fiber attached to a bi-metal. The deformation of the bi-metal caused by the change in its temperature induces the bending loss of the TEC fiber. The experimental result shows that the temperature sensitivity and operation temperature range of the device are controllable through the adjustment of the structure of the expanded core fiber. The fabrication procedure of the device is described in detail.