• Title/Summary/Keyword: Metal Solidification

Search Result 277, Processing Time 0.025 seconds

Solidification and Stabilization of Metal(loid)s-contaminated Soils using Single Binders (단일 고형화제를 이용한 중금속류 오염 토양의 고형화/안정화)

  • Park, Hye Ok;Choi, Jiyeon;Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.135-147
    • /
    • 2015
  • Remediation of metal(loid)s-contaminated sites is crucial to protect human and ecosystem. Solidification and stabilization of metal(loid)s by the binder amendment is one of the cost-effective technologies. In this study, metal (loid)s in various field-contaminated soils obtained from steel-making, metal refinery and mining tillage were immobilized by the application of single binders such as diammonium phosphate (DAP), lime, and ladle slag. The efficiency of solidification and stabilization was evaluated by Toxicity Characteristic Leaching Procedure (TCLP) and the Standard, Measurements and Testing programme of European Union (SM&T) extraction processes. In terms of TCLP extraction, the binder was effective in order of lime > DAP > ladle slag. All binders were highly effective in the immobilization of Pb, Zn, Cu, Ni, and Cd. The increased immobilization efficiency is attributed to the increase in the Step III and IV fractions of the SM&T extraction. Lime and ladle slag were highly effective in the immobilization of the metal(loid)s, however, As release increased with DAP due to competition between the phosphate originated from DAP and arsenate. A further study is needed for the better immobilization of multi metal(loid)s using binary binders.

The Effect of Misch Metal on the Microstructure of Rapidly solidified Ag-Sn-In Alloys (급속응고한 Ag-Sn-In 합금의 미세조직에 미치는 Misch Metal의 영향)

  • Chang, Dae-Jung;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.561-565
    • /
    • 2007
  • Because of a good wear resistance and a stable contact resistance, Ag-CdO is widely used as electrical contact material. But, the Cd-oxide mainly exists as a coarse particle and adversely affected to environment. As a reason, $Ag-SnO_2$ alloy has been developed. The Sn-oxide maintains stable and fine particle even at high temperature. In order to investigate the effect of Misch metal (Mm) additional that affects the formation of the oxide and the formation of fine matrix Ag, we studied the microstructures and properties of Ag-Sn-In(-Mm) material fabricated by rapid solidification process. The experimental procedure were melting using high frequency induction, melt spinning, and internal oxidation. The Mm addition makes Ag matrix more fine than no Mm addition. The reason is that the addition of Misch metal decreased a latent heat of fusion of alloy, as a result the rapid solidification effect of alloy is increased. The maximum hardness shows at 0.3 wt%Mm. after that the hardness is decreased until 0.4 wt% Mm, but still larger than no Mm addition alloy. At 0.5 wt% Mm alloy, the precipitation of Misch metal causes a decrease of hardness than no Mm addition alloy.

Finite Element Analysis of Solidification Processes of Axisymmetric Castings Considering Phase Change and Contact (상변화와 접촉을 고려한 축대칭 주조 응고공정의 유한요소 해석)

  • Ghoo, B.Y.;Keum, Y.T.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.126-141
    • /
    • 1997
  • The purpose of this research is to develope a FEM program for analyzing solidification processes of axisymmetric casting, considering phase changes and the contact between the metal and mold. Tempera- ture recovery method is employed fro considering the phase changes releasing the latent heat and the coin- cident node method is used for calculating the amount of heat transfer between the metal and mold. Tan- gent modulus algorithm is adopted for calculating flow stress and a gap element is employed for modeling the interface between the mold and metal in finding deformed shapes. In order to verify the developed program, axisymmetric aluminum and steel casting processes are simulated. Temperature distribution, phase front position, and shrinkage and porosity creation are compared with measurements, FIDAP results, and good agreements are examined.

  • PDF

Solidification and Leaching Characteristics of Cyclone Ash from Industrial Incineration Plant

  • Lee, Dong-Choon;Kim, Young-Ju
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_2
    • /
    • pp.89-95
    • /
    • 2001
  • The solidification and leaching characteristics of cyclone ash collected from an industrial incineration plant were investigated. Cement and calcium hydroxide were used as the solidifying materials. The leaching characteristics of the solidified cyclone ash were found to vary depending on both the quantitative and the qualitative aspects of the solidifying materials. Except for copper and lead, all the heavy metal ions in the leachate of the solidified material composed of 10~20 % cement or 10~20 % calcium hydroxide were found to be within their standard limit. Moreover, all the heavy metal ions were also observed to be within satisfactory limits in the leachate obtained from the solidified material composed of 30 % cement or 30 % calcium hydroxide. Therefore, to satisfy the standard compressive intensity and permissible limits of heavy metal ions leached from solidified material, it would appear that a 30 % proportion of either additive in the solidification product can meet the required standard for the leachate. The cost of solidifying cyclone ash per ton for ash-30 % cement and ash-30 % lime was calculated as 26,750 and 26,070 won, respectively. Accordingly, significant reduction in the waste toxicity and mobility as well as an improvement in the engineering properties of the solidified products were successfully achieved.

  • PDF

Segregation Phenomenon of As-Cast and Heat Treatment Microstructures in Investment Casting of IN738LC Superalloy (IN738LC 초내열합금 정밀 주조의 주조 및 열처리 미세조직에 구성되는 성분 편석 현상)

  • Choe, Byung Hak;Han, Sung Hee;Kim, Dae Hyun;Ahn, Jong Kee;Lee, Jae Hyun
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.409-419
    • /
    • 2021
  • The effect of solidification rate on micro-segregation in investment casting of IN738LC superalloy was studied. In Ni-based superalloys, the micro-segregation of solute atoms is formed due to limited diffusion during cast and solidification. The microstructure of cast Ni-based superalloys is largely divided into dendrite core of initial solidification and interdendrite of final solidification. In particular, mosaic shaped eutectic γ/γ' and carbides are formed in the interdendrite of the final solidification region in some cases. The micro-segregation phenomena formed in regions of dendrite core and interdendrite including eutectic γ/γ' and carbides were analyzed using OM, SEM/EDS and micro Vickers hardness. As a result of analysis, the lack of (Cr, W) and the accumulation of Ti were measured in the eutectic γ/γ', and the accumulation of (Cr, Mo) and the lack of Ti were measured in the interdendrite between dendrite and eutectic. Carbides formed in interdendritic region were composed of (Ti, W, Mo, C). The segregation applied to each microstructure is mainly due to the formation of γ' with Ni3(Al,Ti) composition. The Ni accumulation accompanied by Cr depletion, and the Ti accumulated in the eutectic region as a γ' forming elements. The Mo tends to diffuse out from the dendrite core to the interdendrite, and the W diffuse out from the interdendrite to the dendrite core. Therefore, the accumulation of Mo in the interdendrite and the deficiency of W occur in the eutectic region located in the interdendrite. Heat treatment makes the degree of the micro-segregation decrease due to the diffusion during solid solution. This study could be applied to the heat treatment technology for the micro-segregation control in cast Ni-based superalloys.

A Study on Alloy Design for Improving Pitting Resistance of Austenitic Stainless Steel Weld under Ocean Water Atmosphere (오스테나이트계 스테인리스강 용접부의 공식저항성을 위한 합금설계에 관한 연구)

  • 변경일;정호신;성상철
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.89-96
    • /
    • 1999
  • The base metal and weld metal of alloy designed austenitic stainless steels were electrochemically tested in artificial sea water. Pitting resistance of 14 different stainless steels was evaluated by measuring pitting potential. The effect of alloy element to pitting potential was evaluated by changing chromium, nickel, sulfur content. The site of pitting initiation was observed by optical microscope. As a result of electrochemical test, pitting resistance of weld metal was higher than base metal, and rapidly cooled weld metal has higher pitting potential than slowly cooled weld metal. In case of primary δ-ferrite solidification, pitting potential was increased, but residual δ-ferrite was detrimental to pitting resistance. Chromium was more effective to pitting resistance than nickel, and sulfur was very detrimental element to pitting resistance.

  • PDF

Solidification Analysis Characteristics of Back Flow Prevention Check Valve (역류방지 체크밸브의 응고해석 특성)

  • Yoon, Jung-In;Moon, Jung-Hyun;Son, Chang-Hyo;Lee, Jung-Jin
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2015
  • Check valves used in vessels include shock-release function on piping system, aside from basic back flow prevention. However, proper and enough protection of system is not obtainable due to use of high-pressure and bulk fluids, resulting from enlargement of vessels. In this study, casting analysis of check valves protecting systems in flow path from water hammering or back flow is conducted, using Z-CAST program. Also, molten metal filling, flow analysis, solidification analysis and shrinkage cavity analysis are conducted. The main results are as following. Regarding filling of each risering, molten metal showed stable supply condition without being isolated. It was identified that the final solidification exists on risering, but shrinkage cavity possibly might happens at the point of isolation solidification.

Thermal Analysis on Twin-Roll Type Strip Continuous Casting Process Considering Contact Thermal Resistance between Molten Metal and Cooling Roll (쌍롤식 박판 연속주조공정에 있어서 용탕과 냉각롤의 접촉 열저항을 고려한 전열해석)

  • Kim, Y.D;Kim, C.G
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.189-205
    • /
    • 1996
  • The twin-roll type strip continuous casting process(or direct rolling process) of steel materials is characterized by two rotating water cooled rolls receiving a steady supply of molten metal which solidifies onto the rolls. A solidification analysis of molten metal considering phase transformation and thermofluid is performed using finite diffefence method with curvilinear coordinate to reduce computing time and molten region analysis with arbitrary shape. An enthalpy-specific heat method is used to determine the temperatures inthe roll and the steel. The temperature distribution of cooling roll is calculated using two dimensional finite element method, because of complex roll shape due to cooling hole in rolls and improvemnt accuracy of calculation result. The energy equaiton of cooling roll is solved simultanuously with the conservation equaiton of molten metal in order to consider heat transfer through the cooling roll. The calculated roll temperature is compared to experimental results and the heat transfer coefficient between cooling roll surface and rolling material(steel) is also determined from comparison of measured roll temperature and calculated temperature.

A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels (304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF

A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area (폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.