Browse > Article
http://dx.doi.org/10.15681/KSWE.2011.27.6.15

A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area  

Oa, Seong-Wook (Department of Railroad, Civil & Environmental Eng. Woosong University)
Publication Information
Abstract
Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.
Keywords
Heavy metal pollution; Leaching test; Lime stabilization; Solidification;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 국립환경과학원(2007). 폐광지역 농경지토양 및 수질오염 정밀조사 최종보고서.
2 김은이, 강완협, 박주양(2005). 폐광산 비소 오염 토양의 특성 및 고형화/안정화. 한국폐기물학회지, 22(4), pp. 363-371.
3 이민희, 이예선, 양민준, 김종성, 왕수균(2008). 폐광산 주변 중금속 오염 농경지 토양 복원을 위한 석회(CaO)와 석회암($CaCO_3$)의 안정화 효율 규명. 자원환경지질학회지, 41(2), pp. 201-210.
4 이상훈, 조정훈(2009). 폐광산 주변 중금속 오염 농경지 토양 복원을 위한 다양한 첨가제의 안정화 효율 비교 및 컬럼 시험 연구. 한국지하수토양환경학회지, 14(4), pp. 45-53.
5 이준호, 남권철, 박갑성(2006). 중금속 오염 폐광산 주변토양의 세정. 수질보전 한국물환경학회지, 22(5), pp. 871-878.
6 이현준, 김효진, 오현주, 조기종, 김정규, 정진호(2007). 폐광산 배수와 퇴적물의 중금속 오염과 생물독성 평가. 수질보전 한국물환경학회지, 23(2), pp. 287-293.
7 정영욱, 민정식, 권광수, 이현주(1997). 광산폐수 정화용 소택지의 기질물질 효율성 평가. 한국자원공학회지, 34, pp. 142-151.
8 한국환경기술개발원(1994). 휴폐광된 금속광산 지역의 오염관리 대책.
9 환경부(2006). 토양오염공정시험기준.
10 환경부(2008). 수질오염공정시험기준.
11 환경부(2009). 토양보전 기본계획 2010-2019.
12 환경부(2011). 토양환경보전법.
13 Bowell, R. J. and Bruce, I. (1995). Geochemistry of iron ochers and mine waters from levant mine. Applied Geochemistry, 10(2), pp. 237-250.   DOI   ScienceOn
14 Clark, S., Grote, J., Wilson, J., Succop, P., Mei, C., Galke, W., McLaine, P. (2004). Occurrence and determinants of increases in blood lead levels in children shortly after lead hazard control activities. Environ. Res., 96(2), pp. 196-205.   DOI   ScienceOn
15 Conner, J. R. (1990). Chemical Fixation and Solidification of Hazardous Wastes. Van Nostrand Reinhold, New York, pp. 293-298.
16 Glasser, F. P. (1997). Fundamental aspects of cement solidification and stabilization. Journal of Hazardous Materials, 52, pp. 151-170.   DOI   ScienceOn
17 Li, X. D., Poon, C. S., Sun, H., Lo, I. M. C., and Kirk, D. W. (2001). Heavy metal speciation and leaching behaviours in cement-based solidified/stabilized waste materials. Journal of Hazardous Materials, 82, pp. 215-230.   DOI   ScienceOn
18 Liu, R. and Zhao, D. (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Research, 41, pp. 2491-2502.   DOI   ScienceOn
19 McCarthy, M. J., Csetenyi, L. J., Jones, M. R., and Sachdeva, A. (2011). Clay-lime stabilization: characterizing fly ash effects in minimizing the risk of sulfate heave, Proceedings of 2011 World Coal Ash Conference, Denver, CO, USA.
20 Qiao, X. C., Poon, C. S., and Cheeseman, C. R. (2006). Transfer mechanisms of contaminants in cementbased stabilized/solidified wastes. Journal of Hazardous Materials, B129, pp. 290-296.
21 Singh, T. S. and Pant, K. K. (2006). Solidification/Stabilization of arsenic containing solid wastes using portland cement, fly ash polymeric materials. Journal of Hazardous Materials, B131, pp. 29-36.
22 United States Environmental Protection Agency (US EPA) (1998). Method 1311, Toxicity Characteristic Leaching Procedure, SW-846: Test Methods for Evaluating Solid Waste Physical/chemical Methods.