• Title/Summary/Keyword: Metal Schiff base complexes

Search Result 45, Processing Time 0.02 seconds

Synthesis and Characterization of Transition Metal(Ⅱ) Complexes with Tridentate Schiff Base in DMF Solution (DMF용액에서 세자리 Schiff Base를 가진 전이금속(II) 착물들의 합성과 구조결정)

  • Oh, Jeong Geun;Choi, Yong Kook
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.511-516
    • /
    • 1999
  • Shiff Base ligand such as [NOIPH] have been synthesized from 2-hydroxy-1-naphthaldehyde and arometic amine. Co(II), Ni(II), and Cu(II) complexes from the reaction metal salts with Tridentate Schiff Base [NOIPH] were sythesized. The ligand and metal(II) complexes were characterized by the elementary analysis, IR, UV-Vis, NMR spectra, and thermogravimetric analysis. Metal(II) complexes in solid state have been shown that the mole raio of Schiff base [NOIPH] as $N_2O$ type to Metal(II) is 2:1 and the metal(II) complexes of $N_2O$ ligand type were four-coordinated configuration.

  • PDF

Synthesis and Characterization of Schiff Base Metal Complexes and Reactivity Studies with Malemide Epoxy Resin

  • Lakshmi, B.;Shivananda, K.N.;Prakash, Gouda Avaji;Isloor, Arun M.;Mahendra, K.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.473-482
    • /
    • 2012
  • A novel malemide epoxy containing Co(II), Ni(II) and Cu(II) ions have been synthesized by curing malemide epoxy resin (MIEB-13) and Co(II), Ni(II) and Cu(II) complexes of macrocyclic bis-hydrazone Schiff base. The Schiff base was synthesized by reacting 1,4-dicarbnyl phenyl dihydrazide with 2,6-diformyl-4-methyl phenol. The Schiff base and its Co(II), Ni(II) and Cu(II) complexes have been characterized by elemental analyses, spectral (IR, $^1H$ NMR, UV-vis., FAB mass, ESR), thermal and magnetic data. The curing reaction of maleimide epoxy compound with metal complexes was studied as curing agents. The stability of cured samples was studied by thermo-gravimetric analyses and which have excellent chemical (acid/alkali/solvent) and water absorption resistance. Further, the scanning electron microscopy (SEM) and definitional scanning colorimetric (DSC) techniques were confirmed the phase homogeneity of the cured systems.

Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

  • Raman, N.;Sakthivel, A.;Rajasekaran, K.
    • Mycobiology
    • /
    • v.35 no.3
    • /
    • pp.150-153
    • /
    • 2007
  • New $N_2O_2$ donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and $^1H$ NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of $10{\sim}31{\mu}g/ml$.

Synthesis, characterization, and biological significance of mixed ligand Schiff base and alizarin dye-metal complexes

  • Laith Jumaah Al-Gburi;Taghreed H. Al-Noor
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.239-250
    • /
    • 2024
  • This study reports the synthesis of a bi-dentate Schiff base ligand (L), 7-(2-((2-formylbenzylidene) amino)-2-phenylacetamido)-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid, prepared from phthalaldehyde and cephalexin antibiotic. The synthesized Schiff base ligand (L) and the secondary ligand alizarin (Az) are used to prepare the new complexes [M(Az)2(L)] and [Cr(Az)2(L)]Cl, where M = Mn(II), Co(II), Ni(II), Cu(II), and Zn(II). The mode of bonding of the Schiff base has been characterized by UV-Visible, FT-IR, Mass, 1H-, and 13C-NMR spectroscopic techniques, and micro elemental analysis (CHNS). The complexes were characterized using UV-Vis, FT-IR, molar conductance, magnetic moment, and thermal analysis (TG/DTG). The molar conductance data revealed that the complexes are non-electrolytes except for [Cr(L)(Az)2]Cl, which is an electrolytic type 1:1. The Schiff base and its complexes have been tested for their biological activity against two strains of bacteria and one fungus. When screened against gram-positive and gram-negative pathogens, the Az and L ligands and their complexes showed potential antimicrobial activity.

Sythesis and Characterization of Transition Metal(II) Complexes with $NOTDH_2$ Schiff Base ($NOTDH_2$ Schiff Base를 가진 전이금속(II) 착물의 합성과 구조분석)

  • Oh, Jeong-Geun;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.498-503
    • /
    • 1999
  • Co(II), Ni(II), and Cu(II) complexes with tetradentate schiff base-$NOTDH_2$, were synthesized. The structures of these complexes were characterized by elemental analysis, IR, UV-visible, NMR spectra, and thermogravimetric analysis. The mole ratio of schiff base($NOTDH_2$) to the metal(II) at complexes was found to be 1:1. Cu(II) complexes were four-coordinated configuration, while Co(II) and Ni(II) complexes were hexacoordinated configuration containing two water molecules and all complexes were non-ionic compounds.

  • PDF

Experimental and Theoretical Study on Corrosion Inhibition of Mild Steel in Oilfield Formation Water Using Some Schiff Base Metal Complexes

  • Mahross, M.H.;Efil, Kursat;El-Nasr, T.A. Seif;Abbas, Osama A.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.222-235
    • /
    • 2017
  • First, in this study, the inhibition efficiencies of metal complexes with Cu(II), Ni(II) and Zn(II) of STSC ligand for corrosion control of mild steel in oilfield formation water were investigated. The IEs for a mixture of 500 ppm STSC and 5 ppm metal ion ($Cu^{+2}$, $Ni^{+2}$, $Zn^{+2}$) were found to be 88.77, 87.96 and 85.13 %, respectively. The results were obtained from the electrochemical techniques such as open circuit potential, linear and tafel polarization methods. The polarization studies have showed that all used Schiff base metal complexes are anodic inhibitors. The protective film has been analyzed by FTIR technique. Also, to detect the presence of the iron-inhibitor complex, UV-Visible spectral analysis technique was used. The inhibitive effect was attributed to the formation of insoluble complex adsorbed on the mild steel surface and the adsorption process follows Langmuir adsorption isotherm. The surface morphology has been analyzed by SEM. Secondly, the computational studies of the ligand and its metal complexes were performed using DFT (B3LYP) method with the $6-311G^{{\ast}{\ast}}$ basis set. Finally, it is found that the experimental results were closely related to theoretical ones.

Synthesis and Physicochemical Properties of Schiff Base Macrocyclic Ligands and Their Transition Metal Chelates

  • Rafat, Fouzia;Siddiqi, K.S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.912-918
    • /
    • 2011
  • Tetraaza Schiff base macrocyclic ligands, $L^1$,$L^2$ and their transition metal chelates have been synthesized and characterized by elemental analyses, IR, electronic, EPR and $^1H$ NMR spectra, TGA and magnetic measurements. The molar conductance of one milli-molar solution of the complexes measured in DMF indicates that the divalent metal complexes are nonelectrolyte while those of trivalent metal ion, are 1:1 electrolytic in the same solvent. The reduction of Racah parameter from the free ion value confirms the presence of considerable covalence of metal ligand sigma bond in the Co(II) and Mn(II) complexes. The EPR spectra of Cu(II) complexes at room temperature shows axial symmetry indicating a $d_x{^2}_{-y}{^2}$ ground state with significant covalent character. The thermal analysis suggests that the complexes do not contain water molecules because only the metal is left as residue.

Synthesis of Transition Metal Cu(II) Complexes and Their Electrochemical Properties (Cu(II) 전이금속 착물의 합성과 전기화학적 성질에 관한 연구)

  • Chae, Hee-nam;Choi, Yong-kook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.719-725
    • /
    • 1998
  • Tridentate Schiff base ligands were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. And then Cu(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Cu(II) complexes were contemplated to be four-coordinated square planar configuration containing one water molecule. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Cu(II) complexes was quasi-reversible and diffusion-controlled as one electron by one step process Cu(II)/Cu(I). The reduction potentials of the Cu(II) complexes shifted in the positive direction in the order of [Cu(II)(HNIPC)($H_2O$)]>[Cu(II)(HNIP)($H_2O$)]>[Cu(II)(SIP)($H_2O$)]>[Cu(II)(SIPC)($H_2O$)].

  • PDF

Analysis of Tridentate Schiff Base Ni(II) Complex (세자리 Schiff Base의 Ni(II) 착물의 분석)

  • Chae, Hee-Nam;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.332-340
    • /
    • 1998
  • Tridentate Schiff base ligands, $SIPH_2$, $SIPCH_2$, $HNIPH_2$, and $HNIPCH_2$ were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. Ni(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Ni(II) complexes were contemplated to be hexa-coordinated octahedral configuration containing three water molecules. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Ni(II) complexes were quasi-reversible and diffusion-controlled as one electron by one step process Ni(II)/Ni(I). The reduction potentials of the Ni(II) complexes shifted in the positive direction in the order [$Ni(II)(HNIP)(H_2O)_3$]>[$Ni(II)(SIP)(H_2O)_3$]>[$Ni(II)(SIPC)(H_2O)_3$]>[$Ni(II)(HNIPC)(H_2O)_3$] and their dependence on ligands were not so high. Consequently the [$Ni(II)(HNIPC)(H_2O)_3$] complex among the synthesized Ni(II) complexes was found to be most stable in the DMSO solution.

  • PDF

Synthesis of Co(II), Ni(II) and Cu(II) Complexes from Schiff base Ligand and Reactivity Studies with Thermosetting Epoxy Resin

  • Lakshmi, B.;Shivananda, K.N.;Prakash, Gouda Avaji;Rama, Krishna Reddy K.;Mahendra, K.N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1613-1619
    • /
    • 2011
  • A hybrid thermosetting maleimido epoxy compound 4-(N-maleimidophenyl) glycidylether (N-MPGE) containing Co(II), Ni(II) and Cu(II) ions was prepared by curing N-MPGE and tetradentate Schiff base Co(II), Ni(II) and Cu(II) complexes. The curing polymerization reaction of N-MPGE with metal complexes as curing agents was studied. The cured samples were studied for thermal stability, chemical (acid/alkali/solvent) and water absorption resistance and homogeneity of the cured systems. The tetradentate Schiff base, 3-[(Z)-2-piperazin-1-yl-ethylimino]-1,3-dihydro indol-2-one was synthesized by the condensation of Isatin (Indole-2, 3-dione) with 1-(2-aminoethyl)piperazine (AEP). Its complexes with Co(II), Ni(II) and Cu(II) have been synthesized and characterized by microanalysis, conductivity, Uv-Visible, FT-IR, TGA and magnetic susceptibility measurements. The spectral data revealed that the ligand acts as a neutral tetradentate Schiff base and coordinating through the azomethine nitrogen, two piperazine nitrogen atoms and carbonyl oxygen.