• Title/Summary/Keyword: Metal Removal

Search Result 1,218, Processing Time 0.026 seconds

Heavy Metal Uptake by Native Plants in Mine Hazard Area (광해지역 토착 자생식물에 의한 중금속 흡수)

  • Choi, Hyung-Wook;Choi, Sang-Il;Yang, Jae-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2010
  • The purpose of this study was in search of native plant species showing metal-resistant property and excessively accumulating heavy metals in metal-contaminated soil or abandoned mines as well as in evaluation of applicability of phytoremediation. In the study area, species showing excessively accumulating heavy metals were a shepherd´s purse, pampas grass, a Korean lettuce, a Hwansam vine, the Korean persicary, a foxtail, a goosefoot, and a water pepper. The first screened plant species in Sambo mine were as shepherd's purse, Korean lettuce and pampas grass Among them the shepherd´s purse can be excluded because it is a seasonal plant and has lower removal capacity for heavy metals. The Korean lettuce was also excluded because of having lower removal capacity for heavy metals. Pampas grass is a highly bionic plant species constantly growing from spring. However it has weak points such as little accumulation capacity for zinc as well as small values of an accumulation factor and a translocation factor. Another problem is regarded as removal of roots after the clean up if pampas grass is applied to a farmland. In Sanyang mine, wormwood and Sorijaengi were considered as adaptable species.

Properties of Fire Endurance of High Performance RC Column with Laterral Confinement Method (횡구속 방법에 따른 고성능 RC 기둥 콘크리트의 내화특성)

  • Hwang Yin Seong;Kim Ki-Hoon;Bae Yeoun Ki;Lee Bo Hyeong;Lee Jae Sam;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.553-556
    • /
    • 2004
  • This paper is to investigate the spalling and fire endurance of high performance RC column member with PP fiber and lateral confinement of metal lath and non fire resistance removal type form. According to test results, combination of PP fiber and metal lath as well as use fire resistance non removal type form had favorable fire resistance by discharging internal vapour pressure and lateral confining. After fire endurance test, compressive strength decreased markedly caused by internal expansion pressure and crack. Residual strength of plain concrete was decreased to $22\%$. The use of PP fiber and lateral confinement of metal lath and non removal type form enhanced the residual strength above $40\%$. Especially, the combination of $0.1\%$ of PP fiber and lateral confinement with the level of 2.3T exhibited more than $51\%$ of residual strength. Therefore, to improve fire endurance and spalling resistance, the combination of $0.1\%$ of PP fiber and metal lath with 2.3T can be the proper measure.

  • PDF

A Study on the Treatment of Heavy Metal in Wastewater by Redox Reaction of Cu-Zn Metal Alloy and Adsorption reaction of Al-Silicate (Cu-Zn 금속합금의 산화 환원반응과 Al-Silicate의 흡착반응을 이용한 폐수 중 중금속처리에 관한 연구)

  • Lee, Soo-Jeong;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.441-448
    • /
    • 2016
  • Heavy metal removal study is conducted from synthetic waste water by reduction and oxidation(redox) reaction of Cu-Zn metal alloy and adsorption reaction of aluminium silicate. Heavy metal whose ionization tendency is smaller than zinc are reducted in an aqueous solution, and the concentration of ionized zinc is reduced by adsorption reaction. The average diameter of metal alloy micro fiber is about $200{\mu}m$, and the surface area is wide enough to get equilibrium in a single cycle treatment. A single cycle treatment of redox reaction of Cu-Zn metal alloy, could remove 100.0 % of Cr(III), 98.0 % of Hg, 92.0 % of Sn and 91.4 % of Cu respectively. An ionization tendency of chromium is very close to zinc, but removal efficiency of chromium by redox reaction is significant. This result shows that trivalent chromium ion is expected to generate hydroxide precipitation with $OH^-$ ion generated by redox reaction. Zinc ion generated by redox reaction is readily removed by adsorption reaction of aluminium silicate in a single cycle treatment. Other heavy metal components which are not perfectly removed by redox reaction also showed very high removal efficiency of 98.0 % or more by adsorption reaction. Aluminium ion is not increased by adsorption reaction of aluminium silicate. That means heavy metal ion removal mechanism by adsorption reaction is turned out to be not an ion exchange reaction, but an adsorption reaction.

Separation of Heavy Metals from Metal-EDTA in Spent Soil Washing Solution by using Na2S (Na2S를 이용한 EDTA 토양세척수로부터의 중금속 분리)

  • Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.103-111
    • /
    • 2015
  • Soil washing with ethylenediaminetetraacetic acid (EDTA) is highly effective in the remediation of soils contaminated with heavy metals. The EDTA recycling process is a requisite for reducing the operating cost. The applicability of Na2S addition on the precipitation of heavy metals from the spent soil washing solution and thereby recycling of EDTA was investigated. Addition of Na2S into the single metal-EDTA and the mixed metal-EDTA solutions ([Na2S]/[metal-EDTA] ratio = 30, reaction time = 30 min and pH = 7~9) was highly effective in the separation of Cu and Pb from metal-EDTA complexes, but not for Ni. The Zn removal efficiency varied with pH and slightly increased upto 40% as the reaction time increased from 0 to 240 min which was longer than those for Cu and Pb. Ca(OH)2 was subsequently added to induce further precipitation of Zn and Ni and to reduce the Na2S dose. At the [Na2S]/[metal-EDTA] ratio of 10, the removal efficiencies of all heavy metals excluding Ni were above 98% with the dose of Ca(OH)2 at 0.002, 0.006 and 0.008 g into 100 mL of Cu-, Pb- and Zn-EDTA solutions, respectively. However, Ca(OH)2 addition was not effective for Ni-EDTA solution. A further research is needed to improve metal removal efficiency and subsequent EDTA recycling for the real application in field-contaminated soils.

Exceptional removal capacity of clenbuterol from aqueous solution by mechano-synthesized [Cu (INA)2]-MOF via ball-mill

  • Marinah Mohd, Ariffin;Usman, Armaya'u;Saw Hong, Loh;Wan Mohd Afiq Wan Mohd, Khalik;Hanis Mohd, Yusoff
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.321-335
    • /
    • 2022
  • Copper-based Metal-organic framework (MOF) namely ([Cu (INA)2]-MOF) is synthesized by ball milling and characterized using scanning electron microscopy (SEM) for the topography, microstructure, and elemental evidence determination, powdered X-ray diffraction (XRD) for the crystallinity measurement, thermogravimetric (TG) analysis was performed to determine the thermal stability of the material, and Fourier transformed infrared (FTIR) spectroscopy for functional groups identification. The use of [Cu (INA)2]-MOF as hazardous removal material of β-agonists as persistent hazardous micro-pollutants in our environmental water is first reported in this study. The removal efficiency of the Cu-MOF is successfully determined to be 97.7% within 40 minutes, and the MOF has established an exceptional removal capacity of 835 mg L-1 with 95 % percent removal on Clenbuterol (CLB) even after the 5th consecutive cycle. The Langmuir model of the adsorption isotherms was shown to be more favourable, while the pseudo-second-order model was found to be favoured in the kinetics. The reaction was exothermic and spontaneous from a thermodynamic standpoint, and the higher temperatures were unfavourable for the adsorption study of the CLB. As a result, the studied MOF have shown promising properties as possible adsorbents for the removal of CLB in wastewater.

A study on Rough machining path generation of sculptured surface by bisection method (이분법에 의한 자유곡면 황삭가공 경로산출에 관한 연구)

  • 신동혁;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.157-163
    • /
    • 1995
  • This paper presents an algorithm to deternine the tool path height for rough machining of sculptured surface. To minimize rough machining of sculptured surface, it is necessary to determine the tool path heights of contour planes. the proposed algorithm searches for the height at which maximum metal removal rate is obtained. This bisection method is accomplished until all shoulder heights are within roughing tolerance. The machining experiment demonstrates the superiority of the algorithm presented in this thesis.

  • PDF

Characteristics of heavy metal adsorption by Korean marine algae

  • Park, Jun-Sub;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.252-256
    • /
    • 2005
  • Removal of heavy metal ions from aqueous solution by brown sea weeds (Hizikia fusiformis, Laminaria, and Undaria pinnatifida) was 80-96% for lead, cadmium, chromium and copper ions. Fifty percent of the adsorption was completed in 4 min. The uptake of lead and cadmium ions followed Langmuir adsorption. In the adsorption experiments using single and multi metal ions 80-95% of metal ions were removed, and the removal efficiency was the best for lead ion.

  • PDF

Removal of Se(IV) by the Fe(III)-impregnated Sea sand - Zeta potential approach to depict the binding between Fe(III) and Sea sand (표면 처리한 Sea sand를 이용한 Se(IV) 제거 - Zeta potential을 통한 Fe(III)간의 반은 메카니즘 연구)

  • 박상원;강혜정
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.205-209
    • /
    • 1999
  • Iron hydroxides are good adsorbents for uncomplexed metals, some metal-ligand complexes and many metal oxyanions. However, their adsorption properties of these precipitations are not fully exploited in wastewater treatment operations because of difficulties associated with their separation from the aqueous phase. This study describes experiments in which iron hydroxides were coated onto the surface of ordinary adsorbents(Sea sand) that are very resistant to acids, The coated adsorbents were used in adsorption of oxyanionic metals. The process was successful in removing some anions such as $SeO_3(-II)$ over a wide range of metal concentrations and sorption of oxyanionic metals increased with decreasing pH. Formation of two surface complexes for oxyanionic metals adsorption on iron hydroxides comprise (1) complexation of the free anion by a positively charged surface site, and (2) protonation of the adsorbed anion (or alternatively adsorption of a protonated form from solution) The coated adsorbents are inexpensive to prepare and could serve as the basis of a useful oxyanionic metal removal.

  • PDF

A Study on the Treatment of Dyeing Wastewater Using the Supernatant after Treatment of Acidic Metal Wastewater (중금속 산폐수 처리 후의 상등액을 이용한 염색폐수처리 연구)

  • 신진명;박장진;김미자;주소영
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.41-50
    • /
    • 2003
  • Traditionally the supernatant after chemical treatment of metal acid wastewater is discharged in environment. The supernatant can be used as a coagulant as it contains effective metals. The aim of this study is to investigate the feasibility of treatment of dyeing wastewater using the supernatant after treatment by magnesium hydroxide and dolomite($Ca{\cdot}Mg(CO_3)_2$), of acidic metal wastewater. In dyeing wastewater treatment with the supernatant, optimum pH and dosage were determined. COD, turbidity and color were analyzed to evaluate the performance of treatment. In the case of magnesium hydroxide, the optimum dosage was 10%(v/v) for supernatant A and 3%(v/v) for supernatant B. Color, turbidity and COD removal was 99~100%, 85~97% and 43~53%, respectively. In the case of dolomite, the optimum dosage was 10%(v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96~99%, 62~9l% and 52~53%, respectively.

Removal of Cupper(II), Zinc(II) in Marine Environment by Heavy Metal Resistant Desulfovibrio desulfuricans (중금속 내성이 있는 Desulfovibrio desulfuricans를 이용한 해양 환경에서의 Cu(II), Zn(II) 제거)

  • Joo, Jeong Ock;Kim, In Hwa;Oh, Byung-Keun
    • KSBB Journal
    • /
    • v.29 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • Microorganisms play a significant role in bioremediation of heavy metal contaminated seawater. In this study, we reported an effective removal of Cu and Zn in marine envionment by using Desulfovibrio desulfuricans (D. desulfuricans) which belong to sulfate reducing bacteria. D. desulfuricans showed stable growth characteristics in high salt concentration and had resistance to heavy metals. Cu and Zn was removed not only by physical adsorption on the surface of bacteria but also by precipitation reaction of microbial metabolism by D. desulfuricans in seawater. In case of different heavy metal concentration, Cu was effectively removed 85% at 25 ppm and 60% at 50 ppm and Zn was effectively removed 54% at 50 ppm and 46% at 200 ppm, respectively.