Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.3.139

Removal of Cupper(II), Zinc(II) in Marine Environment by Heavy Metal Resistant Desulfovibrio desulfuricans  

Joo, Jeong Ock (Interdisciplinary Program of Intergrated Biotechnologyk Sogang University)
Kim, In Hwa (Department of Chemical & Biomolecular Engineering, Sogang University)
Oh, Byung-Keun (Interdisciplinary Program of Intergrated Biotechnologyk Sogang University)
Publication Information
KSBB Journal / v.29, no.3, 2014 , pp. 139-144 More about this Journal
Abstract
Microorganisms play a significant role in bioremediation of heavy metal contaminated seawater. In this study, we reported an effective removal of Cu and Zn in marine envionment by using Desulfovibrio desulfuricans (D. desulfuricans) which belong to sulfate reducing bacteria. D. desulfuricans showed stable growth characteristics in high salt concentration and had resistance to heavy metals. Cu and Zn was removed not only by physical adsorption on the surface of bacteria but also by precipitation reaction of microbial metabolism by D. desulfuricans in seawater. In case of different heavy metal concentration, Cu was effectively removed 85% at 25 ppm and 60% at 50 ppm and Zn was effectively removed 54% at 50 ppm and 46% at 200 ppm, respectively.
Keywords
D. desulfuricans; Sulfate reducing bacteria; Heavy metal; Bioremediation; Marine environment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yurkova, I. L., J. Arnholdb, G. Fitzl, and D. Huster (2011) Fragmentation of mitochondrial cardiolipin by copper ions in the Atp 7b-/- mouse model of Wilson's disease. Chem. Phys. Lipids. 163: 393-400.
2 Hureau, C. and P. Faller (2009) $A\beta$-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie. 91: 1212-1217.   DOI   ScienceOn
3 Krystyna, K. and M. Tadeusz (2012) Precipitation of heavy metals from industrial wastewater by desulfovibrio desulfuricans. Environ. Prot. Eng. 38: 51-60.
4 Jong, T. and D. L. Parry (2004) Adsorption of Pb(II), Cu(II), Cd (II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides. J. Colloid Interface Sci. 275: 61-71.   DOI   ScienceOn
5 Jalali, K. and S. A. Baldwin (2000) The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions. Wat. Res. 34: 797-806.   DOI   ScienceOn
6 Azabou, S., T. Mechichi, and S. Sayadi (2007) Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Miner. Eng. 20: 173-178.   DOI   ScienceOn
7 Muyzer, G. and A. J. M. Stams (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6: 441-454.
8 Ghosh, A. and P. D. Saha (2013) Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. J. Environ. Chem. Eng. 1: 159-163.   DOI   ScienceOn
9 Wang, J. and C. Chen (2009) Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195-226.   DOI   ScienceOn
10 Priyadarshani, I., D. Sahu, and B. Rath (2011) Microalgal bioremediation: Current practices and perspectives. J. Biochem. Tech. 3: 299-304.
11 Kim, S. J., K. W. Park, and B. K. Hur (2000) Characteristics of Linoleic Acid Production by Marine Fungi In Sea Water Media. Korean J. Biotechnol. Bioeng. 15: 195-200.   과학기술학회마을
12 Sinbuathong, N., P. Sirirote, D. Watts, and S. Chulalaksananukul (2013) Heavy metal resistant anaerobic bacterial strains from brewery digester sludge. Int. J. Global Warming 5: 127-134.   DOI   ScienceOn
13 Zhao, S., C. Feng, W. Quan, X. Chen, J. Niu, and Z. Shen (2012) Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary. China Mar. Pollut. Bull. 64: 1163-1171.   DOI   ScienceOn
14 Karnachuk, O. V., S. Y. Kurochkina, D. Nicomrat, Y. A. Frank, D. A. Ivasenko, E. A. Phyllipenko, and O. H. Tuovinen (2003) Copper resistance in Desulfovibrio strain R2. Antonie van Leeuwenhoek. 83: 99-106.   DOI
15 Sulaiman, A. Z., H. E. N. Muftah, and A. H. A. Huda (2008) Sulfate inhibition effect on sulfate reducing bacteria. J. Biochem. Tech. 1: 39-44.
16 Luo, L., C. Ke, X. Guo, B. Shi, and M. Huang (2014) Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal contaminated estuary. Fish Shellfish Immunol. 38: 318-329.   DOI   ScienceOn
17 Bilal, M., J. A. Shah, T. Ashfaq, S. M. H. Gardazi, A. A. Tahir, A. Pervez, H. Haroon, and Q. Mahmood (2013) Waste biomass adsorbents for copper removal from industrial wastewater - A review. J. Hazard. Mater. 263: 322-333.   DOI   ScienceOn
18 Sen, S. K., S. Rauta, T. K. Dora, and P. K. D. Mohapatrab (2014) Contribution of hot spring bacterial consortium in cadmium and lead leadbioremediation through quadratic programming model. J. Hazard. Mater. 265: 47-60.   DOI   ScienceOn
19 Shah, B. A., C. B. Mistry, and A. V. Shah (2013) Sequestration of Cu(II) and Ni(II) from wastewater by synthesized zeolitic materials: Equilibrium, kinetics and column dynamics. Chem. Eng. J. 220: 172-184.   DOI   ScienceOn
20 Peng, S., H. Meng, Y. Ouyang, and J. Chang (2014) Nanoporous magnetic cellulose-chitosan composite microspheres: Preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53: 2106-2113.   DOI   ScienceOn
21 Zhou, A., E. Baidoo, Z. He1, A. Mukhopadhyay, J. K. Baumohl, P. Benke, M. P. Joachimiak, M. Xie, R. Song, A. P. Arkin, T. C. Hazen, J. D. Keasling, J. D. Wall, D. A. Stahl, and J. Zhou1 (2013) Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution. ISME J. 7: 1790-1802.   DOI