• Title/Summary/Keyword: Metal Pollution

Search Result 759, Processing Time 0.032 seconds

A Study on Heavy Metal Contents in Vegetables and Soil at Seoul Area (서울시 일부지역에서 재배한 채소류 및 토양중 중금속 함량에 관한 연구)

  • 강주성;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.2
    • /
    • pp.55-63
    • /
    • 1994
  • While environmental pollution being developed, there have been some cases that residents on certain parts of Seoul area have cultivated vegetables in a small scale, and consumed the produce of theirs thinking them not polluted. Therefore the need for study about whether those vegetables and soil were polluted was growing. In this study, Seoul area (Tobong-dong, Chang-dong, Wolgyedong, P'il-dong, Oksu-dong, and Karibong-dong) and Kyanggi area (Changhang, P'och'an, Kap'yang, Yangp'y~ng) where pollution was thought to be less severe than that of the former were selected for the sampling area. Cabbage, pumpkin and young pumpkin were sampled and dried to be analyzed the contents of Cd, Cr, Cu, Ni, Pb, Zn, and moisture content was also analyzed. And at the same time 0.1 N-HCl soluble heavy metal content of soil was measured, and the results obtained were descrived as follows. Heavy metal contents of soil in Seoul and Kyonggi were Cd 0.184 ppm, 0.118 ppm, Cr 2.355 ppm, 0.441 ppm, Cu 29.16 ppm, 3.331 ppm, Ni 1.650 ppm, 0.829 ppm, Pb 26.77 ppm, 4.696 ppm, Zn 57.47 ppm, 14.94 ppm respectively. Heavy metal contents of cabbage in Seoul and Kyonggi were Cd 0.407 ppm, 0.241 ppm, Cr 0.388 ppm, 0.402 ppm, Cu 6.853 ppm, 4.486 ppm, Ni 1.479 ppm, 0.878 ppm, Pb 0.812 ppm, 0.258ppm, Zn 112.2 ppm, 54.86ppm respectively. Heavy metal contents of pumpkin in Seoul and Ky6nggi were Cd 0.011 ppm, 0.011 ppm, Cr 0,262 ppm, 0.197 ppm, Cu 3.302 ppm, 2.539 ppm, Ni 0.717 ppm, 0.369 ppm, Pb 0.257 ppm, 0.083 ppm, Zn 28.75 ppm, 14.01 ppm respectively. Correlation between heavy metal contents of soil and those of vegetables was represented high as a whole. In all heavy metals cabbage had higher values of concentrations than those of pumpkin (p<0.001). Concentrations of young pumpkin were higher than those of big pumpkin. It was probably due to the fact that young pumpkin containing not only inner part of pumpkin but also seeds was used as a sample. When classified by region, relatively high concentrations were observed in the samples of Karibong-dong, and in the sample of Jungtang riverside Cd was higher, and in the sample of Namsan Pb was higher than any other district.

  • PDF

A Geochemical Study on the Dispersion of Heavy Metal Elements in Dusts and Soils in Urban and Industrial Environments (도시 및 산업환경 분진 및 토양중의 중금속 원소들의 분산에 관한 지구화학적 연구)

  • Chon, Hyo-Taek;Choi, Wan-Joo
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.317-336
    • /
    • 1992
  • The garden soils, main road dusts, residential road dusts, and playground soils/dusts of Seoul, Geumsan, Onsan, and Taebaek areas were analyzed in order to investigate the level of heavy metal pollution by urbanization and industrialization. The soil pH is in the range of 5.48~8.40 and was generally neutral. The color of soils and dusts is mainly Raw Umber to dark greyish Raw Umber. Some samples from Taebaek city, a coal mining area, showed a deep black color due to contamination by coal dusts. Major minerals of the dusts and soils are quartz, feldspars, and micas, reflecting the composition of the parent rocks. However, pyrite was found as a major mineral in the samples of industrial road dusts of Onsan, a smelting area, and resicential road dusts of Taebaek. Thus, the high level of heavy metals in mining and smelting areas can be explained with the sulfide minerals. The mode of occurences of heavy metals in Seoul, a comprehensive urbanized area, were related to the metallic pollutants and organic materials through observation by scanning eletron microscopy. In main road and residential road dusts of Onsan area, Cd, Zn, and Cu were extremely high. Some industrial road and residential road dusts of Seoul area showed high Cu, Zn, and Pb contents, wereas some garden soils and residential road dusts of Taebaek area were high in As content. In general, the heavy metal contents in dust samples were two to three times higher than those in soil samples. Main road dust samples were the most reflective from the discriminant analysis of multi-element data. Cadmium, Sb, and Se in Onsan area, As in Taebaek area, Pb and Te in Seoul area were most characteristic in discriminating the studied areas. Therefore, Cd in smelting areas, As in coal mining areas, and Pb in metropolitan areas can be suggested as the characteristic elements of each pollution pattern. The dispersion of heavy metal elements in urban areas tends to orignate in main roads and deposit in garden soils through the atmosphere and residential roads. The heavy metal contamination in Seoul is characteristic in areas with high population, factory, road, and traffic decsities. Heavy metal contents are high in the vicinity of smelters in Onsan area and are decayed to background levels from one kilometer away from the smelters.

  • PDF

Pollution History of the Masan Bay, Southeast Korea, from Heavy Metals and Foraminifera in the Subsurface Sediments (중금속 원소와 유공충을 이용한 마산만 퇴적물의 오염 역사에 관한 연구)

  • Cho, Jin-Hyung;Jeong, Kap-Sik;Chung, Chang-Soo;Kwon, Su-Jae;Park, Sung-Min;Woo, Han-Jun
    • Journal of the Korean earth science society
    • /
    • v.24 no.7
    • /
    • pp.635-649
    • /
    • 2003
  • Heavy metal concentrations and benthic foraminiferal distributions were investigated in three short sediment cores in order to understand the pollution history in Masan Bay. Sedimentation rates were 0.33 cm/yr, 0.20 cm/yr and 0.33 cm/yr in the inner bay, the out fall of Dugdong sewage disposal plant, and bay mouth, respectively. The rapid increases of copper, zinc and lead concentrations at the core depth of 10 cm the upper part indicated that Masan Bay has been polluted with industrial wastes since the 1940s. Benthic foraminifera in core sediments show that the variations in their distribution were followed by industrial pollution in the bay. The number of individuals and species diversity decreased, whereas agglutinated tests increased upward in the cores with increased heavy metal pollution. These shifts effectd the abundance of few tolerant forms and consequently decreased the species diversity. The opportunistic species Eggerella advena and Trochammina pacifica increased in polluted sediments. These species can be used as an indicator for assessments of environmental quality in Masan Bay.

Speciation and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Masan Bay (마산만 표층퇴적물에서 미량금속의 화학적 존재형태 및 생태계 위해도 평가)

  • Sun, Chul-In;Lee, Young-Ju;An, Jung-Hyun;Lee, Yong-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • Total concentration and chemical speciation of trace metals (Cu, Pb, Zn, Cd, and Ni) were determined to evaluate pollution level and potential ecological risk in surface sediments of the Masan Bay. The results showed that the trace metal concentrations, except for Ni, were high in the inner Masan Bay. Based on the chemical speciation of metals in sediments, the percentage of total concentrations of Cd and Pb in non-residual fraction was 92% and 88%, respectively, indicating that these metals originated mainly from anthropogenic sources. However, Ni (70%) was dominant in residual fraction. Pollution load index (PLI) and ecological risk index (ERI) values in the inner bay indicate the presence of anthropogenic pollution and considerable-moderate ecological risk, respectively. Ecological index (Ei) value for Cd was high at most stations in the Masan Bay, and Cd content was the highest in acid soluble fraction, which presents the highest ecological risk. The results obtained in this study indicate that Cd presents a high potential ecological risk to benthic biota in the Masan Bay.

Pollution Status of Surface Sediment in Jinju Bay, a Spraying Shellfish Farming Area, Korea (살포식 패류양식해역인 진주만 표층 퇴적물의 오염도)

  • Lee, Garam;Hwang, Hyunjin;Kim, Jeong Bae;Hwang, Dong-Woon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.392-402
    • /
    • 2020
  • We investigated the concentrations of acid volatile sulfide (AVS), ignition loss (IL), total organic carbon (TOC), total nitrogen (TN), and metallic elements (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, and Zn), in August 2015, to determine the spatial distribution and pollution status of organic matter and metals in the surface sediment of Jinju Bay, a spraying shellfish farming area, Korea. The concentrations of organic matter and metallic elements were significantly higher in the southern part of the bay than in the mouth and center of the bay. The C/N ratio (5.7~8.0) in the sediment represents the dominance of organic matter of oceanic origin in the surface sediment of the study area. The concentrations of AVS, TOC, and metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) were much lower than the values of the sediment quality guidelines applied in Korea. Based on the results of the pollution load index (PLI) and ecological risk index (ERI), the metal concentrations in the surface sediment of Jinju Bay have a weakly negative ecological effect on benthic organisms although the sediments with high metal pollution status are distributed in the southern parts of the bay, with high dense shellfish farming areas. Thus, the surface sediments in Jinju Bay are not polluted with organic matter and are slightly polluted with metallic elements.

Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea (시화호 코어 퇴적물 내 미량금속 분포 특성 및 오염 평가)

  • Ra, Kongtae;Kim, Eun-Soo;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.69-83
    • /
    • 2013
  • Metal concentrations in creek water, sewer outlets and core sediments were analyzed to identify the potential origin of metal pollution and to evaluate the extent of metal pollution and potential toxicity of Lake Shihwa. Mean concentrations for dissolved metals in creek water and sewer outlets were 1.6~136 times higher than those in the surface seawater of Lake Shihwa. Metal concentrations in creek water from an industrial region were also higher than those from municipal and agricultural regions, indicating that the potential source of metal pollution in the study area might be mainly due to industrial activities. The vertical profiles of metals in core sediments showed an increasing trend toward the upper sediments. Extremely higher concentrations of metals were observed in the vicinity of Banweol industrial complex. The results of a geo-accumulation index indicated that Cu, Zn and Cd were highly polluted. By comparing the sediment quality guidelines such as TEL and PEL, six metals such as Cr, Ni, Cu, Zn, Cd and Pb levels in core sediments nearby industrial complex exceeded the PEL value. Mean PEL quotient (mPELQ) was used to integrate the estimate of potential toxicity for measured metals in the present study. Mean PELQs in core sediments from Lake Shihwa ranged from 0.2~2.3, indicating that benthic organisms nearby the industrial complex may have been adversely affected.

Fractionation and Pollution Index of Heavy Metals in the Sangdong Tungsten Mine Tailings (광미에 존재하는 중금속의 분획화와 오염도 평가)

  • Yang, Jae-E.;Kim, Hee-Joung;Jun, Sang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2001
  • Enormous volumes of mining wastes from the abandoned and closed mines are disposed without a proper treatment in the upper Okdong River basin at Southeastern part of Kangwon Province. Erosion of these wastes contaminates soil, surface water, and sediments with heavy metals. Objectives of this research were to fractionate heavy metals in the mine tailing stored in the Sangdong Tungsten tailing dams and to assess the potential pollution index of each metal fraction. Tailing samples were collected from tailing dams at different depth and analyzed for physical and chemical properties. pH of tailings ranged from 7.3 to 7.9. Contents of total N and organic matter were in the ranges of 3.2~5.5%, and 1.3~9.1%, respectively. Heavy metals in the tailings were higher in the newly constructed tailing dam than those in the old dam. Total concentrations of metals in the tailings were in the orders of Zn > Cu > Pb > Ni > Cd, exceeded the corrective action level of the Soil Environment Conservation Law and higher than the natural abundance levels reported from uncontaminated soils. Relative distribution of heavy metal fractions was residual > organic > reducible > carbonate > adsorbed, reversing the degree of metal bioavailability. Mobile fractions of metals were relatively small compared to the total concentrations. Distribution of metals in the tailing dam profiles was metal specific. Concentrations of Cu at the surface of tailing dams were higher than those at the bottom. Pollution index (PI) values of each fraction of metals were ranged from 4.27 to 8.51 based on total concentrations. PI values of mobile fractions were lower than those of immobile fractions. Results on metal fractions and PI values of the tailing samples indicate that tailing samples were contaminated with heavy metals and had potential to cause a detrimental effects on soil and water environment in the lower part of the stream. A prompt countermeasure to prevent surface of tailings in the dams from water and wind erosions is urgently needed.

  • PDF

A Study on the Heavy Metal Tolerance in Several Herbaceous Plants (수종 초본식물의 중금속 내성에 대한 연구)

  • Cho, Do-Soon;Joon-Ho Kim
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.147-156
    • /
    • 1995
  • Restoration of ecosystems degraded by heavy metal pollution can be accomplished by soil amendment and selection and utilization of plants tolerant to heavy metals. Two former zinc mine sites, Sambo Mine in Hwasung, Kyonggi-do and the Second Yonhwa Mine in Samchuk, Kangwon-do, were selected for collection of plant samples and for determination of heavy metal tolerant species. Dominant species on mine waste deposits in Hwasung site were Panicum bisulcatum and Echinoch/oa crus-galli, while those in Samchuk site were Aster yomena, Setaria viridis, Artemisia lavandulaefolia and Oenothera odorata. Mean contents of zinc, lead and cadmium in Hwasung soil were 103, 117 and 1 ppm, respectively, while those in Samchuk soil were 23, 6 and 4 ppm, respectively, Zinc contents were higher in Echinochloa crus-galli from Hwasung and in Artemisia lavandulaefolia from Samchuk, while lead contents were higher in Panicum bisulcatum and Echinochloa crus-galli from Hwasung and Lactuca sonchiJolia and Pinus densiJolia from Samchuk. Plant species with higher cadmium contents were Panicum bisulcatum and Lactuca sonchiJolia. Comparison of metal contents between roots and shoots showed that Echinochloa crus-galli was a zinc accumulator, while Panicum bisulcatum, Persicaria hydroPiPer, Pinus densiJlora and Lactuca sonchiJolia were zinc excluders. In addition, Panicum bisulcatum and Persicaria hydroPiPer were proved to be lead excluders. When both heavy metal contents in plant tissues and biomass of individual plants are considered, it can be concluded that Echinochloa crus-galli and Panicum bisulcatum from Hwasung and Artemisia lavandulaefolia and Aster yomena are heavy metal absorbing plants. The effect of heavy metals on seed germination showed that Artemisia princeps var. orientalis had higher germination rates, but no significant difference in concomitant decrease of germination rates among the species investigated were found by increasing heavy metal contents.

  • PDF

A Study on the Production of Tile using Waste Activated Carbon and its Character Evaluation (폐 활성탄을 이용한 타일 제조 및 특성 평가에 관한 연구)

  • Park, Heung-Jai;Kim, Min-Su;Jeong, Jing-Wun;Jeong, Un;Lee, Bong-Hun;Kim, Young-Sik;Park, Yeon-Kyu;Jung, Sung-Uk
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2001
  • The tiles were manufactured using a mixture of the TK material(a raw material in making tile) and Cu-Cr-Ag impregnated activated carbon(ASC Charcoal). The extraction character of heavy metals in making tile was evaluated and the manufacturing conditions of tile were studied. The heavy metals in the mixture-before and after the tile was production of tiles was successful and as a result of heavy metal analysis, the tile showed that the concentration of heavy metal after the production of tiles was lower than that of the before one. The concentration of eluted heavy metal by acidic and basic solutions was low and the quality of the produced tile was similar to the commercial one. The result of this study suggested that the waste ASC charcoal was used to produce good tiles and it also might reduce soil pollution.

  • PDF

Studies on the Heavy Metal Contamination in the Sediment of the Han River (한강으로 유입된 저질중의 중금속오염도 조사)

  • 신정식;박상현
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.83-93
    • /
    • 1991
  • For the survey of water pollution, several heavy metals were analyzed in the sediment of the Han River from March 20 to April 22, 1989. The results were as follows : 1. The respective ranges of heavy metal concentrations of Cadimium, Lead, Copper, Zinc and Manganese found in the sediments of the Han River were 0.32!2.41 $\mu g/g$, 15.80~129.64 $\mu g/g$, 13.82~372.36 $\mu g/g$, 58.40~925.40 $\mu g/g$, 271.50~668.30 $\mu g/g$. 2. In the sediment of inflow site Jung Rang Chon the contents of Lead, Copper, Zinc were the highest among other sampling points and An Yang Chon, the contents of Cadmium, was the highest among other sampling points and Wang Sook Chon, the contents of Manganese, was the highest among other sampling points. 3. Through all sampling points general trend of heavy metal contamination showed the highest in Zinc, the next Manganese, Copper, Lead and Cadmium respectively. 4. The higher amount of heavy metal was found in the finer particles of sediment. 5. The amount of Cadmium and Lead of the Han River water was below the standard of environment.

  • PDF