• Title/Summary/Keyword: Metal PCB

Search Result 136, Processing Time 0.027 seconds

Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process (인쇄회로기판 제조공정 중 발생한 슬러지 내 건식환원 처리를 통한 구리 회수를 위한 슬러지 분석 및 열역학적 계산)

  • Han, Chulwoong;Kim, Young-Min;Kim, Yong Hwan;Son, Seong Ho;Lee, Man Seung;Lee, Ki Woong
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.85-96
    • /
    • 2017
  • In this study, we tried to select a slag system capable of pyro-metallurgical process through analysis of sludge generated from PCB plating and etching process solution. Based on this, the possibility of extracting valuable metals in the sludge was studied by experimental and thermodynamic approaches. The sludge was dried at $100{\sim}500^{\circ}C$ and the morphology, chemical composition and phase of the sludge were analyzed. The possibility of pyro-metallurgical process of sludge was investigated through thermodynamic approach using FactSage software.

Pyro-metallurgical Treatment of used OA Parts for the Recovery of Valuable Metals (유가금속(有價金屬) 회수(回收)를 위한 PCB 스크랩의 건식처리기술(乾式處理技術))

  • Shin, Dong-Yeop;Lee, Sang-Dong;Jeong, Hyeon-Bu;You, Byung-Don;Han, Jeong-Whan;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.46-54
    • /
    • 2008
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals. In this study, pyro-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analysis were made. 15 mass %$Al_2O_3-45$ mass %CaO-40 mass %$SiO_2$ and 32 mass %$SiO_2-20$ mass %$Al_2O_3-38$ mass %CaO-10 mass %MgO, were chosen as basic slag compositions which are determined based on the quantitative analysis of PCB scrap. During experiments a super kanthal rotating furnace was used to melt and separate metallic components. Moreover the revolution effect on was the recovery of valuable metals from PCB scrap also investigated.

Melting of PCB scrap for the Extraction of Metallic Components (PCB스크랩으로부터 유가금속성분 회수를 위한 용융처리)

  • Kwon Eui-Hyuk;Jang Sung-Hwan;Han Jeong-Whan;Kim Byung-Su;Jeong Jin-Ki;Lee Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals mixed with various types of plastics and ceramics. In this study, high temperature pyre-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. For this purpose, PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analyses were made. After the oxidation of the PCB scrap, $30.6wt\%SiO_2,\;19.3wt\%Al_2O_3\;and\;14wt{\%}CaO$ were analyzed as major oxides, and thereafter, a typical composition of $32wt\%SiO_2-20wt\%Al_2O_3-38wt{\%}CaO-10wt\%MgO$ was chosen as a basic slag system for the separation of metallic components. Moreover a size effect of crushed PCB scrap was also investigated. During experiments a high frequency induction furnace was used to melt and separate metallic components. As a result, it was found that the size of oxidized PCB scrap was needed to be less 0.9 m to make a homogeneous liquid slag and to recycle metallic components over $95\%$.

방열기판 전극형성 기술 동향

  • Kim, Dan-Bi;Kim, Ji-Won;Eom, Nu-Si-A;Im, Jae-Hong
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2018
  • There is close relation between the heat generation and the performance of electronic device. The durability and efficiency of the device are degraded due to heat generation. It is necessary to release the generated heat from an electronic device. Based on demands of the printed circuit board (PCB) manufacturing, the robust and reliable plating technique of PCB is necessary. In this study, we review various methods for improving the heat sink property. These methods were considered to enhance the adhesion between ceramic substrate as heat sink and metal layer as electrode.

Micro Patterning of Nano Metal Ink for Printed Circuit Board Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 나노 금속잉크의 인쇄회로기판용 미세배선 형성)

  • Park, Sung-Jun;Seo, Shang-Hoon;Joung, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.89-96
    • /
    • 2007
  • Inkjet printing has become one of the most attractive manufacturing techniques in industry. Especially inkjet printing technology will soon be part of the PCB (Printed Circuit Board) fabrication processes. Traditional printing on PCB includes screen printing and photolithography. These technologies involve high costs, time-consuming procedures and several process steps. However, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. PCB manufacturers therefore willingly accept this inkjet technology to the PCB industry, and are quickly shifting from conventional to inkjet printing. To produce the printed circuit board by the inkjet technology, it must be harmonized with conductive nano ink, printing process, system, and inkjet printhead. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense 20-40 ${\mu}m$ diameter droplets and silver nano ink which consists of 1 to 50 nm silver particles that are homogeneously suspended in an organic carrier. To fabricate a conductive line used in PCB with high precision, a printed line width was calculated and compared with printing results.

The Survey about Toxic Material Contamination at the Streamwater around the Sudokwon Kandfill Area (수도권 매립지 주변 하천의 독성물질 오염실태 조사)

  • Kang, Chang-Min;Lee, In-Hyun;Jang, Won
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.565-572
    • /
    • 1998
  • This study estimate the degree of contamination in the streamwater around the Sudokwon landfill site. It was sampled at 10 sites in Jan., Apr., Jul. and Oct., 1996. There were analyzed five kinds of toxic chemical material-CN, AES, PCB, As, Org-p, and four kinds of heavy metal-Pb, Hg, Cd, $C^{+6}$ The result are 1)The COD was generally increased to compare before landfall, 2) The Org-P and PCB were not detected at all points, 3) The concentrations of Pb, $C^{+6}$ and As were lower than the environmental criteria values, 4) The CN, Hg and Cd were over envirommental criteria values. and so emergent regulation is needed, 5) The effects of the streamwater contamination were not only the leachate of the landfall, but also the small factories and agricultural land around the landfill.

  • PDF

LED Sensitive Light System Development by Brain-wave (LED감성조명 장치 개발을 통한 뇌파분석)

  • Choi, Keum-Yeon;Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • The purpose of this experiment is to analyze the basic status of brain. Which are consist of rest, attention and concentration, of the brain by measuring the temperature of color by changing RGB color after manufacturing LED-illumination stand. Basic status (rest, attention and concentration) of experimenter were measured temperature of colors having three difference temperature like as $2,300^{\circ}K$, $4,000^{\circ}K$ and $6,000^{\circ}K$. The results was shown that experimenter feels more comfortable and relaxation by decreasing the temperature of color. For example we can see the little increase of concentration index at $4,000^{\circ}K$ condition and we can estimate that right brain can be more activated at the $4,000^{\circ}K$ condition. But we can not find out any different at the $6,000^{\circ}K$ condition. Main cause of no difference from the color temperature was the similarity of color temperature under the general fluorescent lamp. And interface temperature of radiant heat design results LED and PCB was approximately 80 degrees to COMSOL Multiphysics, and changed until approximately 50 degrees until a floor plane of PCB, and verification as arranged chip LED to metal PCB, and it was possible, and a near radiant heat design was confirmed to an approximate value of, as a result, acid manufacture.

Dielectric Waveguide Filters Design Embedded in PCB Substrates using Via Fence at Millimeter-Wave (밀리미터파 대역에서 Via Fence를 이용한 PCB 기판용 유전체 도파관 필터 설계)

  • 김봉수;이재욱;김광선;강민수;송명선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, the implementation and embedding method of the existing air-filled waveguide-filters at millimeter-wave on general PCB substrate is introduced by systematically inserting the vias inside waveguide and mathematically manipulating the simple equations obtained ken the classical circular-post waveguide filter design. All the metal structures placed vertically such as side wall fur perfect ground plane and circular-post for signal control in the air-filled WR-22 waveguide are replaced with several types of via for constructing the bandpass-filter. Side wall and poles inside waveguide are realized by placing a series array of via and tuning the via diameter. The lengths of x, y, z axis are reduced in proportion to root square of employed substrate dielectric constant and especially the length of z axis can be more reduced due to the characteristics of the wave propagation. Because the mass production on PCB is possible without fabricating a large-scaled metal waveguide of WR-22 as input/output ports at millimeter-wave regime, the manufacturing cost is reduced considerably. Finally, when using multilayer process like LTCC for small-sized module, it is one of advantages to use only one layer f3r the filter fabrication. To evaluate the validity of this novel technique, order-3 Chebyshev BPF(Bandpass-Filter) centered at 40 GHz-band with a 2.5 % FBW (Fractional Bandwidth) were used. The employed substrate has relative dielectric constant of 2.2 and thickness of 10 mil of Rogers RT/Duroid 5880. Accroding to design and measurement results, a good performance of insertion loss of 2 ㏈ and return loss of -30 ㏈ is achieved at full input/output ports.

77-GHz Slot Array Antenna Using PCB and ACF (PCB와 ACF를 이용한 77 GHz 슬롯 배열 안테나)

  • Yoon, Pyoung-Hwa;Kwon, Oh-Yun;Song, Reem;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.752-757
    • /
    • 2018
  • This study presents the performance evaluation results of a 77-GHz waveguide slot array antenna that was fabricated by attaching a patterned printed circuit board(PCB) on a metal block. The 77-GHz waveguide was divided into a top plate and a bottom structure. The top plate was fabricated using a patterned PCB that can implement a fine slot at low cost. The top cover was then bonded to the bottom metal structure with a waveguide trough using anisotropic conductive film. For evaluating the antenna performance, a $1{\times}16$ slot array antenna was fabricated using our proposed method and the gain and pattern were measured and compared with the simulation results. Though the measurement results demonstrate a reduction in gain of around 2.3~3.5 dB compared to the simulation results assuming ideal bonding conditions, the pattern hardly changed and the slot antenna with a gain of approximately 17 dBi at 77 GHz can be easily manufactured at a low cost using the proposed method.

Heat dissipation of Al2O3 Insulation layer Prepared by Anodizing Process for Metal PCB (Metal PCB에 있어서 양극산화법으로 제작한 Al2O3절연막의 방열특성)

  • Jo, Jae-Seung;Kim, Jeong-Ho;Ko, Sang-Won;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.2
    • /
    • pp.33-37
    • /
    • 2015
  • High efficiency LED device is being concerned due to its high heat loss, and such heat loss will cause a shorter lifespan and lower efficiency. Since there is a demand for the materials that can release heat quickly into the external air, the organic insulating layer was required to be replaced with high thermal conductive materials such as metal or ceramics. Through anodizing the upper layer of Al, the Breakdown Voltage of 3kV was obtained by using an uniform thickness of $60{\mu}M$ aluminum oxide($Al_2O_3$) and was carried out to determine the optimum process conditions when thermal cracking does not occur. Two Ni layers were formed above the layer of $Al_2O_3$ by sputtering deposition and electroplating process, and saccharin was added for the purpose of minimizing the remain stress in electroplating process. The results presented that the 3-layer film including the Ni layer has an adhesive force of 10N and the thermal conductivity for heat dissipation is achieved by 150W/mK level, and leads to improvement about 7 times or above in thermal conductivity, as opposed to the organic insulation layer.