• Title/Summary/Keyword: Metal Composites

Search Result 737, Processing Time 0.027 seconds

Electrodeposition of Ni-W/Al2O3 Nano-Composites and the Influence of Al2O3 Incorporation on Mechanical and Corrosion Resistance Behaviours

  • M. Ramaprakash;R. Nivethida;A. Muthukrishnan;A. Jerom Samraj;M. G. Neelavannan;N. Rajasekaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.377-387
    • /
    • 2023
  • Ni-W/Al2O3 nano-composites were electrodeposited on mild steel substrate for mechanical and corrosion resistance applications. This study focused on the preparation of Ni-W/Al2O3 nano-composite coating with various quantity of Al2O3 incorporations. The addition of Al2O3 in the electrolytes were varied from 1-10 g/L in electrolytes and the Al2O3 incorporation in Ni-W/Al2O3 nano-composite coatings were obtained from 1.82 to 13.86 wt.%. The incorporation of Al2O3 in Ni-W alloy matrix influenced the grain size, surface morphology and structural properties were observed. The distributions of Al2O3 particle in alloy matrix were confirmed using electron microscopy (FESEM and TEM) and EDAX mapping analysis. The crystal structure informations were studied using X-ray diffraction method and it confirms that the deposits having cubic crystal structure. The better corrosion rate (0.87 mpy) and microhardness (965 HV) properties were obtained for the Ni-W/Al2O3 nano-composite coating with 13.86 wt.% of Al2O3 incorporations.

Synthesis and Characterization of Fe-containing AC/TiO2 Composites and Their Photodegradation Effect for the Piggery Waste

  • Oh, Won-Chun
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2008
  • In this present study, we have synthesized Fe-containing AC(activated carbon)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as a titanium source to Fe treated AC through an impregnation method. The result of the textural surface properties demonstrates that there is a slight decrease in the BET surface area of composite samples with an increase of the amount of Fe treated. The surface properties of scanning electron microscope (SEM) presented a characterization of a porous texture on the Fe-containing AC/$TiO_2$ composites and homogenous compositions for Fe and titanium dioxide distributed on the sample surfaces. Fe compound peaks and a titanium dioxide structure were observed in the X-ray diffraction patterns for the Fe-containing AC/$TiO_2$ composites. The results of chemical elemental composition for the Fe-containing AC/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated Fe components and Ti metal than that of any other elements. From the photo degradation results for the piggery waste, the Fe-containing AC/$TiO_2$ composites showed an excellent degradation activity for the chemical oxygen demand (COD) due to a photocatalysis of the supported $TiO_2$, radical reaction by Fe species and the adsorptivity and absorptivity of porous carbon.

Interlaminar Shear Strength of Carbon Fiber Epoxy Composite with Nickel Film (니켈 박막 첨가에 따른 탄소섬유 에폭시 복합재료의 층간 계면 특성)

  • Lee, Min-Kyung
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.94-98
    • /
    • 2015
  • This paper reports the effects of nickel film interleaves on the interlaminar shear strength(ILSS) of carbon fiber reinforced epoxy composites(CFRPs). A nickel thin film was deposited onto the prepreg by radio frequency(RF) sputtering at room temperature. The ILSS of the nickel film interleaved hybrid composites was increased compared to that of the composites without interleaves. To understand the mechanism of enhancement of the ILSS, the fracture surface of the tested specimens was examined by scanning electron microscopy(SEM). The metal interleaves were acted as a reinforcement for the matrix rich interface and the shear property of their composites improved by enhancing the resistance to matrix cracking.

Fabrication of Aluminum Alloy Composites Reinforced with SiC whisker an $Al_2O_3-SiO_2$ Short Fiber by Squeeze Casting (용탕단조에 의한 $Al_2O_3-SiO_2$ 단섬유 및 SiC whisker강화 알루미늄 합금기 복합재료의 제조)

  • Hong, Sung-Kil;Yun, Jung-Yul;Choi, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.28-35
    • /
    • 1997
  • SiC whisker and $Al_2O_3-SiO_2$ short fiber reinforced AC8A, AC8B and AC8B(J) marix composites were fabricated by squeeze casting method. Preform deformation, change of reinforcement volumefraction and formation of macro-segregation in two composites were investigated by using micro Vickers hardness test, analysis of macro and micro structures with OM, SEM and EDAX. $Al_2O_3-SiO_2$ short fiber preform manufactured with 5% $SiO_2$ binder in this study was considerably deformed and cracked, nevertheless, the short fibers were distributed homogeneously in the composites. In SiC whisker reinforced composites, on the other hand, preform deforming and cracking were not occurred, however, macro segregation zone formed along the infiltration routes by interface reaction during infiltration of molten metal into the preform was observed at center-low area in the composites. The decrease of hardness in the macro segregation zone resulted from the depletion of Si and Mg atoms.

  • PDF

In-situ Synthesis and Investment Casting of Titanium Matrix (TiC+TiB) Hybrid Composites (Ti기 (TiC+TiB) 하이브리드 복합재료 반응생성합성 및 정밀주조)

  • Sung, Si-Young;Park, Keun-Chang;Lee, Sang-Hwa;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2004
  • The aim of the present work is to investigate the possibility of in-situ synthesis and net-shape forming of the titanium matrix (TiC+TiB) hybrid composites using a casting route. From the scanning electron microscopy, electron probe micro-analyzer, X-ray diffraction and thermodynamic calculations, the spherical TiC and needle like TiB reinforced hybrid titanium matrix composites could be obtained in-situ by the conventional melting and casting route between titanium and $B_4C$. No melt-mold reaction occurred between the titanium matrix (TiC+TiB) hybrid composites and the SKK mold, since the mold is consisted with interstitial and substitutional metal-mold reaction products. Not only the sound in-situ synthesis but also the economic net-shape forming of the titanium matrix (TiC+TiB) hybrid composites could be possible by the conventional casting route.

Effects of Boride on Properties of SiC Composites (SiC계 복합체의 특성에 미치는 Boride의 영향)

  • Shin, Yong-Deok;Ju, Jing-Young;Jeon, Jae-Duck;So, Byung-Moon;Lee, Dong-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.191-193
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC-39vol.% $TiB_2$ and using 61vol.% SiC-39vol.% $ZrB_2$ powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by hot pressing annealing at $1650^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, $ZrB_2$ were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H, 3C), $TiB_2$, $ZrB_2$ and $YAG(Al_5Y_3O_{12})$ crystal phase on the SiC-$TiB_2$, and SiC-$ZrB_2$ composites. The ${\beta}\;{\alpha}$-SiC phase transformation was occurred on the $SiC-TiB_2$, $SiC-ZrB_2$ composites. The relative density, the flexural strength and Young's modulus showed respectively value of 98.57%, 226.06Mpa and $86.37{\times}10^3Mpa$ in SiC-$ZrB_2$ composites.

  • PDF

Fatigue Crack Growth Characteristics of $SiC_p/Al-Si$ Alloy Composites for Automotive Structures (자동차구조용 $SiC_p/Al-Si$복합재의 피로균열 진전특성에 대한 연구)

  • Koh Seungkee;Lee Haemoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.174-181
    • /
    • 2005
  • In order to investigate the behavior of fatigue crack growth of SiC-particulate- reinforced Al-Si alloy composites, fatigue tests using single edge notched tension(SENT) specimens were performed. Composite materials were manufactured by using both permanent die casting and extrusion processes with different volume fractions of $10\%\;and\;20\%$. $SiC_p-reinfurced$ Al-Si composites showed the increased levels of threshold stress intensity factor range, ${\Delta}K_{th}$, for the increased volume fractions of SiC particles, which implies the increased fatigue crack growth resistance at the threshold or low ${\Delta}K$ levels, compared to the unreinforced Al-Si alloy. In the Paris region, however, the composites showed the increased rate of crack growth resulting in the unfavorable effects on the fatigue crack growth resistance. Critical stress intensity factor range at unstable crack growth leading to final fracture decreased as the volume fraction of SiC particle increased, because of the reduced fracture toughness of the composites. Extruded materials showed higher threshold and critical values than the cast materials.

Effect of Annealing on Properties of SiC-$TiB_2$ Composites (SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF

Friction and Wear Behavior of Carbon/PEEK Composites according to Sliding Velocity

  • Yoon, Sung-Won;Kim, Yun-Hae;Lee, Jin-Woo;Kim, Han-Bin;Murakami, Ri-Ichi
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.3
    • /
    • pp.147-151
    • /
    • 2013
  • This study was to correctly estimate the friction and wear behavior of carbon fiber and PEEK sheet composites, and the validity of using them as alternatives to the metal-based materials used for artificial hip joints. Moreover, this work evaluated the friction coefficient according to the fiber ply orientation, along with the fractured surfaces of the carbon/PEEK composites. The unidirectional composites had higher friction coefficients than those multidirectional composites. This was caused by the debonding between the carbon fiber and the PEEK sheet, which was proportional to the contact area between the sliding surface and the carbon fiber. The friction test results showed that there was no significant differences in relation to the fiber ply orientation. However, in a case where the speed was 2.5 m/s, the friction coefficient was relatively large for configuration I. The friction surface of the specimen was analyzed using an electron microscope. In all cases, the debonding of the fiber and PEEK could be confirmed.