• 제목/요약/키워드: Metal Composites

Search Result 737, Processing Time 0.025 seconds

Numerical Investigation of the Progressive Failure Behavior of the Composite Dovetail Specimens under a Tensile Load (인장하중을 받는 복합재료 도브테일 요소의 점진적인 파손해석)

  • Park, Shin-Mu;Noh, Hong-Kyun;Lim, Jae Hyuk;Choi, Yun-Hyuk
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.337-344
    • /
    • 2021
  • In this study, the progressive failure behavior of the composite fan blade dovetail element under tensile loading is numerically investigated through finite element(FE) simulation. The accuracy of prediction by FE simulation is verified through tensile testing. The dovetail element is one of the joints for coupling the fan blade with the disk in a turbofan engine. The dovetail element is usually made of a metal material such as titanium, but the application of composite material is being studied for weight reduction reasons. However, manufacturing defects such as drop-off ply and resin pocket inevitably occur in realizing complex shapes of the fan blade made by composite materials. To investigate the effect of these manufacturing defects on the composite fan blade dovetail element, we performed numerical simulation with FE model to compare the prediction of the FE model and the tensile test results. At this time, the cohesive zone model is used to simulate the delamination behavior. Finally, we found that FE simulation results agree with test results when considering thermal residual stress and through-thickness compression enhancement effect.

Study on the Split Hopkinson Pressure Bar Apparatus for Measuring High-strain Rate Tensile Properties of Plastic Material (플라스틱 소재의 고 변형률 인장특성 평가를 위한 홉킨스바(Split Hopkinson Pressure Bar) 측정 장비에 관한 연구)

  • Han, In-Soo;Lee, Se-Min;Kim, Kyu-Won;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.196-200
    • /
    • 2022
  • Split Hopkinson Pressure Bar (SHPB) is a general test equipment for measuring the mechanical properties of high modulus metal and composite materials at high strain rate. However, for the soft plastic material, it is difficult to hold the specimen and achieve dynamic stress equilibrium due to the weak transmitted signals. In this study, SHPB test apparatus were designed to measure accurately the high strain rate stress-strain curve of the soft plastic materials by changing the incident bar materials and the shape of the specimen holder parts. In addition, to verify the high strain-rate tensile strain data obtained from SHPB, the strain distribution of the specimen was measured and analyzed with a high-speed camera and the digital image correlation (DIC), which was compared with the strain history measured from SHPB.

Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum (고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구)

  • Kim, Min-Sang;Son, Hansol;Jung, Cha Hee;Han, Juyeon;Kim, Jung Joon;Kim, Young-Do;Choi, Hyunjoo;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.

A Study on the Application of Carbon Fiber Reinforced Plastics to PTO Shafts for Aircrafts (탄소섬유 강화 복합재료의 항공기용 PTO 샤프트 적용에 관한 연구)

  • Jeong, Kwang Il;Kim, Wonki;Jeong, Jae-Moon;Oh, Jaehyung;Bang, Yun Hyuk;Kim, Seong Su
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.380-386
    • /
    • 2021
  • This paper aims to improve the critical speed of power-take-off (PTO) shafts by using carbon fiber reinforced plastics (CFRPs). The PTO shaft was designed with titanium-CFRPs hybrid structure in order to compensate the low shear strength of CFRPs. Based on the requirements for PTO shafts, the dimensions of PTO shafts were determined through a parametric study. To evaluate the performance of the PTO shaft, a vibration test, a static torsion test, and a torsion durability test were performed. In the vibration test, the critical speed of PTO shafts was 20570 rpm, which was 7.5% higher than that of titanium shafts. Additionally, it was confirmed that the maximum allowable torque of the PTO shaft was 2300 N·m. Finally, under repeated load in the range of 11.3 to 113 N·m, the fatigue failure in the PTO shaft did not occur up to 106 cycles.

Development of GDL-carbon Composite Bipolar Plate Assemblies for PEMFC (PEM 연료전지용 가스확산층-탄소 복합재료 분리판 조합체 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.406-411
    • /
    • 2021
  • PEM (proton exchange membrane) fuel cells generate only water as a by-product, and thus are in the spotlight as an eco-friendly energy source. Among the various components composing the stack of the fuel cell, research on the bipolar plate that determines the efficiency of the fuel cell is being actively conducted. The composite bipolar plate has high strength, rigidity and corrosion resistance, but has the disadvantage of having a relatively low electrical conductivity. In this study, to overcome these shortcomings, a gas diffusion layer (GDL)-composite bipolar plate assembly was developed and its performance was experimentally verified. The graphite foil coating method developed in the previous study was applied to reduce the contact resistance between the bipolar plate and the GDL. In addition, in order to improve electron path in the stack and minimize the contact resistance between the GDL and the bipolar plate, a GDL-bipolar plate assembly was fabricated using a thin metal foil. As a result of the experiment, it was confirmed that the developed GDL-bipolar plate assembly had 98% lower electrical resistance compared to the conventional composite bipolar plate.

Thermal and Rheological Characterizations of Polycarbosilane Precursor by Solvent Treatment (폴리카보실란 전구체의 용매 처리에 따른 열적 및 유변학적 특성 분석)

  • Song, Yeeun;Joo, Young Jun;Shin, Dong Geun;Cho, Kwang Youn;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • Polycarbosilane(PCS) is an important precursor for melt-spinning the silicon carbide(SiC) fibers and manufacturing ceramics. The PCS is a metal-organic polymer precursor capable of producing continuous SiC fibers having excellent performance such as high-temperature resistance and oxidation resistance. The SiC fibers are manufactured through melt-spinning, stabilization, and heat treatment processes using the PCS manufactured by synthesis, purification, and control of the molecular structure. In this paper, we analyzed the effect of purification of unreacted substances and low molecular weight through solvent treatment of PCS and the effect of heat treatment at various temperatures change the polymerization and network rearrangement of PCS. Especially, we investigated the complex viscosity and structural arrangement of PCS precursors according to solvent treatment and heat treatment through the rheological properties.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Preparation of Carbon Films from Polyacrylonitrile@Lignin Composites, and Their Electrical Properties and Adsorption Behavior (폴리아크릴로나이트릴/리그닌 복합소재로부터 생성된 탄소 필름의 전기적 성질 및 흡착 성능)

  • Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.106-110
    • /
    • 2023
  • Lignin is compatible with various polymeric materials and useful as a carbon precursor. In this work, carbon monolith films were produced from polyacrylonitrile (PAN)@lignin precursor films by a controlled carbonization cycle. In addition, their morphological features, electrical properties, and adsorption behavior were analyzed and compared with those of carbonized PAN films. The successful formation of PAN@lignin precursor was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. SEM was used to examine the morphology of precursor and carbonized films, revealing that both precursor and carbonized films retained structural stability following carbonization. A trace of lignin in the carbonized films was also found. The pore structure of the carbonized PAN@lignin film was measured using the BET method, indicating the formation of fairly uniform pores. The electrical properties were also analyzed to obtain the Ohmic relation, which demonstrated that the electrical signal was influenced by incoming materials. Finally, the carbonized PAN@lignin films were useful as adsorbents to remove metal ions. This study provides important information for future initiatives in relevant research fields.

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.

Development of Optimization Code of Type 3 Composite Pressure Vessels Using Semi-geodesic algorithm (준측지궤적 알고리즘을 이용한 타입 3 복합재 압력용기의 최적설계 프로그램 개발)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Cheol-Ung;Kim, Chun-Gon
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Composite vessels for high pressure gas storage are commonly used these days because of their competitive weight reduction ability maintaining strong mechanical properties. To supplement permeability of composite under high pressure, it is usually lined by metal, which is called a Type 3 vessel. However, it has many difficulties to design the Type 3 vessel because of its complex geometry, fabrication process variables, etc. In this study, therefore, GUI (graphic user interface) optimal design code for Type 3 vessels was developed based on semi-geodesic algorithm in which various factors of geometry and fabrication variables are considered and genetic algorithm for optimization. In addition, hydrogen vessels for 350/700 bar that can be applied to FCVs(fuel cell vehicles) were designed using this code for verification.