• Title/Summary/Keyword: Metal Composites

Search Result 739, Processing Time 0.026 seconds

A Study for Characteristic and Manufacturing of Porous Ni/AC4C and Ni-Cr/AC4C Composites (다공질 Ni 및 Ni-Cr으로 강화한 AC4C 복합재료의 제조 및 특성연구)

  • Kim, Young-Hyun;Kim, Eok-Soo;Yeo, In-Dong;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Ni and Ni-Cr porous metals which are estimated to be easy to fabricate by squeeze casting are used as strengtheners for composite materials. As a matrix material, Al-7%wtSi-0.3 wt%Mg(AC4C) has been used. In case of Ni/AC4C and Ni-Cr/AC4C composite, $750^{\circ}C$ melt temperature and minimum 25 MPa squeezing pressure are needed to produce sound composite materials. The observation of interfacial reaction zone at various heat treatment condition showed that solutionizing temperature of above 520^{\circ}C$, the interfacial reaction zone increased proportionally with increasing heat treatment tim and reaction products formed by interfacial reaction are mainly composed of $Al_3Ni$ and $Al_3Ni_2$ phases. The tensile strength of Ni/AC4C and Ni-Cr/AC4C composite is lower than the matrix metal and this can be explained by the brittle intermetallic compounds formed at the interface of Ni and Ni-Cr reinforcements. But the properies of hardness, wear resistance and thermal expansion are better than the matrix due to the strengthening effect of Ni-Cr porous metals.

  • PDF

Fabrication and Properties of Reaction Squeeze Cast $(Al_2O_3+Si)/Mg$ Hybrid Metal Matrix Composites (반응용탕단조법에 의한 $(Al_2O_3+Si)/Mg$ 하이브리드 금속복합재료의 제조 및 특성평가)

  • Oh, Dong-Hyun;Jeon, Sang-Hyuk;Park, Ik-Min;Cho, Kyung-Mox;Choi, Il-Dong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2000
  • In the present study,($10%Al_2O_3+5%Si$)/AZ91 Mg hybrid composite was fabricated using the squeeze casting method. During squeeze casting, Molten Mg was infiltrated into the preform of $10%Al_2O_3+5%Si$ and reaction product of $Mg_2Si$ intermetallic compound was formed by the reaction between molten Mg and Si Powder. Microstructure has been observed and mechanical properties were evaluated for the reaction squeeze cast(RSC) hybrid composite. It was found that Si powder totally reacted with molten Mg to form $Mg_2Si$. Reinforcement($Al_2O_3$) and the reaction product ($Mg_2Si$) are fairly uniformly distributed in Mg Matrix for the squeeze cast hybrid composite. Mechanical Properties were improved with hybridization of reinforcements, namely higher hardness and enhanced wear resistance comparing squeeze cast($15%Al_2O_3$)/AZ91 Mg composite.

  • PDF

Compositing Modes and Microstructures of $Cu-X(=Al_2O_3,W)_p$ Composite by Centrifugal Spray-Cast Deposition (원심분사주조법에 의한 $Cu-X(=Al_2O_3,W)_p$ 복합재료의 미세조직 및 복합화)

  • Bae, Cha-Hurn;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.480-487
    • /
    • 1997
  • Particle reinforced metal matrix composites(MMCs) via a centrifugal spray-cast deposition(CSD) process were fabricated by injecting second phase particles($Al_2O_3$<40${\mu}m$, W<17.3${\mu}m$) into copper melt on the atomizing disc. Compositing modes were investigated by combining microstructures and mathematical modeling between Cu droplets and the reinforced particles injected. The $Cu/W_P$ powders were shown that the W particles penetrate and get embedded in the Cu droplets. It is considered that the W particles composite preferentially in Cu melt on the atomizing disc. On the other hand, the $Al_2O_3$, particles did not penetrate into the Cu droplets on the atomizing disc but get attached in surface of Cu droplets during the flight. It is considered that the compositing may be attained in the flight distance which the relative velocity between Cu droplet and $Al_2O_3$, particle is maximum. The microstructure of the $Cu/W_P$ and the $Cu/(Al_2O_3)_p$ composite preform was strongly influenced by compositing modes of droplets, and after subsequent deposition it was comprised as it is called the dispersed type and the cell type of microstructure, respectively.

  • PDF

Electrochemical properties of $TiO_2$/CNTs composite as anode materials for lithium secondary battery system (리튬이차전지용 음극물질 $TiO_2$/CNTs의 전기화학적 특성)

  • Oh, Mi-Hyun;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1363-1364
    • /
    • 2007
  • The composites such as Sn-CNTs, $SnSb_{0.5}$-CNTs and $CoSb_3$-CNTs have attracted much attention in the past years owing to their good overall properties. In these samples, intermetallic compounds show high specific capacities. Recently, interest in metal oxides such as $Al_{2}O_{3}$, MgO and $TiO_2$ has been largely stimulated by the realization that they can improve the cycling stability of the Li-ion battery electrodes. The reversible capacity of the $TiO_2$/CNTs composite reaches 168 mAh $g^{-1}$ at the first cycle and remains almost constant during long-term cycling. In this study, a nanocomposite of $TiO_2$/CNTs was prepared by sol-gel method and its electrochemical properties as anode materials for Li-ion batteries were studied by galvanostatic cycling, cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS).

  • PDF

Static analysis of rubber components with piezoelectric patches using nonlinear finite element

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.23-42
    • /
    • 2009
  • In order to reduce vibration or to control shape of structures made of metal or composites, piezoelectric materials have been extensively used since their discovery in 1880's. A recent trend is also seen to apply piezoelectric materials to flexible structures made of rubber-like materials. In this paper a non-linear finite element model using updated Lagrangian (UL) approach has been developed for static analysis of rubber-elastic material with surface-bonded piezoelectric patches. A compressible stain energy function has been used for modeling the rubber as hyperelastic material. For formulation of the nonlinear finite element model a twenty-node brick element is used. Four degrees of freedom u, v and w and electrical potential ${\varphi}$ per node are considered as the field variables. PVDF (polyvinylidene fluoride) patches are applied as sensors/actuators or sensors and actuators. The present model has been applied to bimorph PVDF cantilever beam to validate the formulation. It is then applied to study the smart rubber components under different boundary and loading conditions. The results predicted by the present formulation are compared with the analytical solutions as well as the available published results. Some results are given as new ones as no published solutions available in the literatures to the best of the authors' knowledge.

Design, modelling and analysis of a new type of IPMC motor

  • Kolota, Jakub
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.223-231
    • /
    • 2019
  • The properties of Electroactive Polymer (EAP) materials are attracting the attention of engineers and scientists from many different disciplines. From the point-of-view of robotics, Ionic Polymer Metal Composites (IPMC) belong to the most developed group of the EAP class. To allow effective design of IPMC-actuated mechanisms with large induced strains, it is necessary to have adequate analytical tools for predicting the behavior of IPMC actuators as well as simulating their response as part of prototyping methodologies. This paper presents a novel IPMC motor construction. To simulate the bending behavior that is the dominant phenomenon of motor movement process, a nonlinear model is used. To accomplish the motor design, the IPMC model was identified via a series of experiments. In the proposed model, the curvature output and current transient fields accurately track the measured responses, which is verified by measurements. In this research, a three-dimensional Finite Element Method (FEM) model of the IPMC motor, composed of IPMC actuators, simultaneously determines the mechanical and electrical characteristics of the device and achieves reliable analysis results. The principle of the proposed drive and the output signals are illustrated in this paper. The proposed modelling approach can be used to design a variety of controllers and motors for effective micro-robotic applications, where soft and complex motion are required.

Initiation and Growth Behavior of Small Surface Fatigue Crack in SiC Reinforced Aluminum Composite (SiC 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 진전 거동)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2009
  • Reversed plane bending fatigue tests were conducted on SiC particle reinforced and SiC whisker reinforced aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and the causes of fracture and fracture mechanism were investigated by SEM. The relationship between da/dn and $K_{max}$ show that da/dn increases in high stress level while decrease and again increases with increasing of $K_{max}$ in low stress level for two materials.

Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials (NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 )

  • JinUk Yoo;Sung Gyu Pyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill (교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Batjargal, Uyanga;Bor, Amgalan;Batchuluun, Ichinkhorloo;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission (음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가)

  • Kang, Moon-Phil;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.381-389
    • /
    • 2000
  • Metal matrix composite(MMCs) have been rapidly becoming one of the strongest candidates for structural materials for high temperature application. It is well recognized that MMCs always experience at least one large cool-down from processing temperature before my significant applied service loading. Due to the large difference in thermal expansion coefficient between the fiber and matrix, large thermal residual stresses generally develop in composites. It was reported from many previous studies that the effects of thermal residual stress on mechanical properties and fracture behavior were much more complex and dramatic than conventional engineering materials. Therefore it is crucial to evaluate the effect of heat treatment which changes the characteristic of distribution of thermal residual stress in MMCs. Single fiber composite(SFC) test based on the balance in a micromechanical model is a quite convenient method to evaluate interfacial shear strength(IFSS) and the failure mode of composite. In this study the effect of heat treatment on IFSS and the microscopic failure mechanism of MMC is investigated by combining acoustic emission(AE) technique with SFC test. The characteristic of AE signal, IFSS and microscopic failure mechanism due to heat treatment condition is discussed.

  • PDF