• Title/Summary/Keyword: Metal Chloride

Search Result 455, Processing Time 0.032 seconds

Development of dry-origin latent footwear impression on non-porous and semi-porous surfaces using a 5-methylthioninhydrin and L-alanine complex

  • Hong, Sungwook;Kim, Yeounjeung;Park, Jihye;Lee, Hoseon
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • 5-methylthioninhydrin (5-MTN) is an amino acid sensitive reagent used for the development of latent fingermarks deposited on porous surfaces such as paper and wood. The present study demonstrates that the 5-MTN can be used as a latent footwear impression enhancement reagent, by reacting with trace multivalent metal ions, which are the main components of the latent footwear impression. 5-MTN and L-alanine complex (MTN-ALA) used for the latent footwear impression development was prepared, by mixing $4.5{\times}10^{-3}M$ 5-MTN (in methanol) and $4.5{\times}10^{-3}M$ L-alanine (in methanol) in 1:1 ratio, and keeping undisturbed at room temperature for 24 h. The latent footwear impressions were deposited on white and black non-porous surfaces (glass plate, polyethylene panel, polypropylene panel, acryl panel, polyvinyl chloride (PVC) panel, poly(methyl methacrylate) (PMMA) panel, acrylonitrile-butadiene-styrene (ABS) panel, tile), and a semi-porous surfaces (painted wood). The latent footwear impressions on these surfaces were treated with MTN-ALA complex by spraying. The fluorescence of footwear impressions (occurred due to the reaction between MTN-ALA and metal complexes) was observed under a 505 nm forensic light source and an orange barrier filter. The enhancement of latent footwear impression was achieved from black surfaces without any blurring. However, the fluorescence (enhancement) of footwear impression was not observed on the white PVC, PMMA, and ABS surfaces, because the incident light interfered and reflected on the surface. The sensitivity of MTN-ALA was superior to 2,2'-dipyridil, which is a representative non-fluorescing footwear impression enhancement reagent, and similar to 8-hydroxyquinoline, which is a representative fluorescing footwear impression enhancement reagent.

SENSITIVITY TO NICKEL, COBALT, CHROME, & COFFER IN DENIAL ALLOYS (치과 보철물 합금 성분중 니켈, 코발트, 크롬 및 구리에 대한 감작률에 관한 조사 연구)

  • Park Young-Mi;Choi Dae-Gyun;Choi Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.155-166
    • /
    • 1992
  • In dentistry, precious metal alloys are, mainly due to economic factors, increasingly displaced by alternatives containing Ni-Cr-Co. There are some reports where hypersensitive reactions to Ni-Cr-Co alloys are presented and discussed. The reactions reported vary from mucosa contact stomatitis to generalized dermatitis without any oral mucosal reaction. The purpose of this study was to investigate the incidence of nickel, chrome, cobalt and copper, and to know whether subjects with positive skin reaction to nickel would also demonstrate adverse intraoral reaction to a non-precious metal nickel. The patch tests were performed in 81 subjects(male 39, female 42) and nickel sulfate 5% aq., potassium bichromate 0.5% at., cobalt chloride 2% aq., & copper sulfate 1% aq., were used for test allergens. And then the intraoral tests were performed in 16 subjects, 8 subjects with positive allergic skin reaction to nickel and 8 subjects with negative allergic skin reaction. A pure metallic nickel plate was attached to the buccal side of the upper second premolar. The results are as follows : 1. The frequency of nickel sensitivity was 9.9% (2 men, 6 women), cobalt was 4.9% (1 man, 3 women), and chrome was 2.5% (2 men) respectively and there was no positive reaction to copper 2. The positive reactions were 8 of 23 (34.8%) with a history of jewelry allergic reactions and 3 of 58 (5.1%) without a history of jewelry allergic reactions. 3. Three of 8 subjects with positive skin reaction. gave reactions to the metal plates.

  • PDF

Protective Ability Index of Rust Layer Formed on Weathering Steel Bridge

  • Hara, S.;Kamimura, T.;Miyuki, H.;Yamashita, M.;Uchida, H.
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • For a quantitative inspection on the performance of weathering steel bridges, we have investigated the relationship between the corrosion rate and the composition of the rust layers formed on weathering steel bridges located in various environments in Japan and applied a protective ability index (PAI) to the bridges. The corrosion rates were clearly classified by the PAI, ${\alpha}/{\gamma}*$ and sub index of $({\beta}+s)/{\gamma}*$, where $\alpha$, \gamma*, $\beta$ and s are the mass ratio of crystalline $\alpha-FeOOH$, the total of $\gamma$-FeOOH+ $\beta$-FeOOH + the spinel-type iron oxide (mainly $Fe_3O_4$), $\beta-FeOOH$ and spinel-type iron oxide, analyzed by powder X-ray diffraction, respectively. In the case of ${\alpha}/{\gamma}$*>1, the rust layer works protective enough to reduce the corrosion rate less than 0.01 mm/y. The sub index $({\beta}+s)/{\gamma}*$<0.5 or >0.5 classifies the corrosion rate of the non-protective rust layers, therefore the former state of the rust layer terms inactive and the latter terms active. The quantitative inspection of a weathering steel bridge requires a performance-inspection (PI) and periodical deteriorationinspections (DI). The PI can be completed by checking of the PAI, ${\alpha}/{\gamma}*$. The DI on the weathering steel bridges where deicing salt is sprinkled can be performed by checking the PAI, $({\beta}+s)/{\gamma}*$.

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe according to Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Jo, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • The sea water pipe of a ship's engine room is a severely corrosive environment caused by fast flawing sea water containing chloride ions and high conductivity. Therefore, leaking of sea water may occur as a result of local corrosion of the welded zone. Leaking is usually controlled by various welding methods. In this study, when the sea water pipe is welded with certain welding methods and welding electrodes, the corrosion resistance of WM (Welding metal) and HAZ (Heat affected zone) was investigated using electrochemical methods. Although the corrosion potential of the HAZ is higher than that of WM, the corrosion resistance of WM is superior to HAZ. However, when WM and HAZ are both opened to the sea water, the WM part with the anode was more seriously corroded than was the HAZ of the cathode by performance of a galvanic cell due to difference of the corrosion potential between HAZ and WM. In particular TIG welding showed relatively good results in corrosion resistance of both HAZ and WM compared to other welding methods.

Investigation of Al-Ni Alloys Deposition during Over-discharge Reaction of Na-NiCl2 Battery

  • Kim, Jeongsoo;Jo, Seung Hwan;Park, Dae-In;Bhavaraju, Sai;Kang, Sang Ook
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.57-62
    • /
    • 2016
  • The over-discharging phenomena in sodium-nickel chloride batteries were investigated in relation to decomposition of molten salt electrolyte and consequent metal co-deposition. From XRD analysis, the material deposited on graphite cathode current collector was revealed to be by-product of molten salt electrolyte decomposition. In particular, the result showed that the Ni-Al alloys ($Al_3Ni_2$, $Ni_3Al$ and $Al_3Ni$) were electrochemically deposited on graphite current collectors in line with over-discharging behaviors. It is assumed that the $NiCl_2$ solubility in molten salt electrolytes leads to the co-deposition of Ni-Al alloys by increasing metal deposition potential above 1.6 V (vs. $Na/Na^+$). The cell tests have revealed that the composition of molten salt electrolytes modified by various additives makes a decisive influence on the over-discharging behaviors of the cells. It was revealed that NaOCN addition to molten salt electrolytes was advantageous to suppress over-discharge reactions by modifying the characteristics of molten salt electrolytes. NaOCN addition into molten salt electrolytes seems to suppress Ni solubility by maintaining basic melts. The cell using modified molten salt electrolyte with NaOCN (Cell D) showed relatively less cell degradation compared with other cells for long cycles.

Metal Complexes of Ambidentate Ligand (Ⅶ). Palladium (Ⅱ) Complexes of Isonitrosobenzoylacetone Diimine Derivatives (Ambidentate 리간드의 금속착물 (제 7 보). Isonitrosobenzoylacetone 디이민유도체를 리간드로 하는 팔라듐 (Ⅱ) 착물)

  • Choi, Gang-Yeol;Jun, Young-Sook;Baek, Jae-Bum;Lee, Man-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.667-672
    • /
    • 1991
  • Two palladium(Ⅱ) complexes, N-(2-aminoethylisonitrosobenzoylacetone imino) chloropalladium(Ⅱ), PdCl(IBA)-en, and N-(3-aminopropylisonitrosobenzoylacetone imino) chloropalladium(Ⅱ), PdCl (IBA)-tn, have been prepared from the condensation of isonitrosobenzoylacetone (IBA) and diamine (ethylenediamine(en) or trimethylenediamine(tn)) in the presence of palladium(Ⅱ) ion. It is suggested that the Schiff base formed by condensation of an isonitrosobenzoylacetone and a diamine coordinates to the metal through three nitrogens of isonitroso (=N-O), C=N, and $NH_2$groups as a tridentate ligand. And also a chloride ion coordinates to the metal in addition to the Schiff base ligand to form a square-planar geometry.

  • PDF

Syntheses of Metalloporphyrins and Polymer-bonded Metalloporphyrin and Their Catalytic Effects on Benzoquinone Photoreduction (Metalloporphyrins 와 Polymer-bonded Metalloporphyrin 의 합성 및 Benzoquinone 광환원반응의 촉매효과)

  • Kyu-Ja Whang;Hee-Kyung Lee;Yong-Keun Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.569-574
    • /
    • 1991
  • Six free base porphyrins were synthesized by reacting pyrrole with benzaldehyde or its derivatives and then reacted with metal chlorides to prepare corresponding metal complexes. In addition, polymer-bonded porphyrins were synthesized by treating chloromethylated styrene-divinyl benzene (1%) copolymer beads with meso-tetra (p-aminophenyl)porphyrin (TNPP) solution and then treated with cupric chloride to obtain Cu(Res-NH-TPP-$NH_2$). The porphyrin compounds were characterized by visible, inffrared and electron spin resonance spectral analyses. The metal contents of metalloporphyrins were determined by atomic adsorption spectrophotometry. The synthesized porphyrin compounds were subsequently examined for their catalytic strength and found the activity to increase in the following order: free base porphyrins; metalloporphyrins; polymer-bonded metalloporphyrin. Among metalloporphyrins, Cu-TNPP showed the greatest catalytic power.

  • PDF

Application of Synthetic Mineral Microparticles with Various Metal Species

  • Lee, Sa-Yong;Hubbe, Martin A.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • Synthetic mineral microparticles (SMM) is a patented system which has been developed to promote drainage of water and retention of fine particles during papermaking. It is shown in patents that the SMM system can have advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. Turbidity and gravity drainage time were measured using a Britt-Jar test with representative SMM formulations, in order to confirm the efficacy of SMM covering a wide range of compositions and discover effects of some key variables that have the potential to lead to unexpected advantages in terms of the effectiveness of the microparticles, when used in combination with a cationic polyacrylamide treatment of papermaking furnish. An iron silicate showed highest retention performance, as well as suitably fast drainage time relative to other metal silicate and bentonite. Zinc silicate improved retention and drainage. SMM synthesized from aluminum sulfate ($Al_2(SO_4){_3}$) did not show a benefit in retention and drainage, relative to bentonite. SMM synthesized from aluminum chloride ($AlCl_3$) performed better in drainage and retention than bentonite when the Al/Si ratios were 0.76 and 1.00. It was found that when the Al/Si ratio and neutralization are considered, pH variation due to the change of Al/Si ratio can be a key factor to control the size of primary metal silicate particles and the degree of coagulation of the primary particles.

Voltammetric Determination of Copper(II) at Chemically Modified Carbon Paste Electrodes Containing Alga

  • Bae, Zun-Ung;Kim, Young-Lark;Chang, Hye-Young
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.611-615
    • /
    • 1995
  • The design of appropriate chemically modified electrodes should allow development of new voltammetric measurement schemes with enhanced selectivity and sensitivity. Microorganism like algae has high ability to trap toxic and heavy metal ions and different affinities for metal ions. A copper(II) ion-selective carbon paste electrode was constructed by incorporating alga Anabaena into a conventional carbon paste mixture, and then the film of 10% Nafion was coated to avoid the swelling of the electrode surface. Copper ion could be deposited at the 25% algamodified electrode for 15 min without the applied potential while stirring the solution by only immersing the electrode in a buffer (pH 4.0) cot1taining copper(II). Temperature was controlled at $35^{\circ}C$. After preconcentration was carried out the electrode was transferred to a 0.1 M potassium chloride solution and was reduced at -0.6 volt at $25^{\circ}C$. The differential pulse anodic stripping voltammetry was employed. A well-defined oxidation peak could be obtained at -0.1 volt (vs SCE). In five deposition / measurement / regeneration cycles, the responses were reproducible and relative standard deviations were 3.3% for $8.0{\times}10^{-4}M$ copper(II). Calibration curve for copper was linear over the range from $2.0{\times}10^{-4}M$ to $1.0{\times}10^{-3}M$. The detection limit was $7.5{\times}10^{-5}M$. Studies of the effect of diverse ions showed that the coexisting metal ions had little or no effect for the determination of copper. But anions such as cyanide. oxalate and EDTA seriously interfered.

  • PDF

Tallium(I) Ion-Selective Electrodes Based on Crown Ethers (크라온에테르를 이용한 탈륨(I) 이온 선택성 전극)

  • Sung Min Kim;Sung Uk Jung;Jineun Kim;Jae Sang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.773-778
    • /
    • 1993
  • Poly(vinyl chloride)(PVC) membrane electrodes based on the lipophilic neutral carrier, dibenzo-18-crown-6(DB18C6) and benzo-15-crown-5 (B15C5) as the active sensors for Tl$^+$ ion have been prepared and tested in different content of the potassium tetrakis(4-chlorophenyl)borate (KTClPB) as lipophilic salt. Dioctyl adipate (DOA), 2-nitrophenyl phenyl ether (NPPE) and o-nitrophenyl actyl ether (NPOE) were used as plasticizing solvent mediators. Electrodes exhibited good linear responses of 40∼55 mV decade$^{-1}$ for Tl$^+$ ion within the concentration ranges 10$^{-1}$∼10$^{-5}$M TlNO$_3$. Selectivity coefficients of interfering ions (alkali metal, alkaline earth metal and some transition metal ions) for Tl$^+$-ISE were determined by separate solution method and were sufficiently small for most of them. These crown ether type ion-selective electrodes are suitable for use with aqueous solution at pH > 3.

  • PDF