• Title/Summary/Keyword: Metal 3D Printer

Search Result 44, Processing Time 0.031 seconds

Irregular surface output using FDM (Fused Deposition Modeling) 3D printer (FDM(Fused Deposition Modeling) 방식 3D 프린터를 이용한 불규칙한 표면 출력)

  • Lee, Jung-Soo;Cha, Kyung-Chul
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • As 3D printer-related patents expire and major technologies are disclosed, the price of 3D printers is dropping, creating an environment where you can easily find the product you want. In particular, the cheapest FDM (Fused Deposition Modeling) 3D printer is being used in various fields. The FDM method can be manufactured without collapsing of the shape only by attaching a support under certain conditions when outputting the shape. When printing a shape without a support, the irregular surface that occurs at a certain angle is a defect in the product, but it is considered that it can be used as another fun factor in terms of arts and crafts. In this paper, to obtain such an irregular surface, factors that can affect the output were controlled and only the output angle was tested as a displacement factor. As a result of the experiment, it was possible to obtain an irregular surface without the filament flowing down when printing at an angle of 62° to 70° from the vertical. Also, artificially irregular surfaces were applied to craft products.

A Basic Study on the Manufacture of UHPC 3D stereoscopic panels using 3D Printer (3D 프린터를 활용한 UHPC 3D 입체패널 제작에 관한 기초적 연구)

  • Kim, Tae-Ik;Yoon, Ju-Yong;Choi, Byung-Keol;Park, Yong-Kyu;Lee, Dae Seek;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.154-155
    • /
    • 2021
  • Appearance finish is important for amorphous buildings to maximize amorphousness, and GFRC, glass, and metal are mostly used as exterior materials for amorphous buildings currently applied. However, the existing exterior materials showed limitations in amorphous expression, texture, and color expression. In this study, a 3D stereoscopic panel mold was manufactured using the FDM method, one of the 3D printing technologies, and 3D stereoscopic panel production was reviewed using Ultra High Performance Concrete (UHPC), which has excellent physical and mechanical performance and expression. In order to overcome the limitations of unstructured expression, a UHPC 3D stereoscopic panel using the FDM method, one of the 3D printing technologies, was manufactured. Unlike steel molds, FRP molds, and EPS molds, the FDM method can be applied to various materials, and complex shapes are implemented. If it is used using recyclable materials as well as PLA filaments used in the FDM method, it will overcome the limitations of amorphous expression and activate the production of 3D stereoscopic panels that have secured eco-friendliness.

  • PDF

The Micro Coil Production through Research on the Additive Conditions of Electrochemical Metal 3D Printer (전기화학적 금속 3D 프린터의 적층 조건 연구를 통한 마이크로 코일 제작)

  • Kim, Young-Kuk;Kang, Donghwa;Kim, Sung-Bin;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.138-143
    • /
    • 2020
  • In this study, we produced a coil of micro-pattern that can be used for electromagnetic wave absorber, heating material, wireless charging, sensor, antenna, etc. by using electrochemical additive manufacturing method. Currently, it contains research contents for manufacturing a micro pattern coil having practicality through control of process control variables such as applied voltage, distance between electrode, and nozzle injection. Circulation of the electrolyte through the nozzle injection control can significantly contribute to improving the surface characteristics of the coil because of minimizing voltage fluctuations that may occur during the additive manufacturing process. In addition, by applying the pulse method in the application of voltage, the lamination characteristics of the plated body were improved, which showed that the formation of a fine line width plays an important role in the production of a micro pattern coil. By applying the pulse signal to the voltage application, the additive manufacturing characteristics of the produced product were improved, and it was shown that the formation of a fine line width plays an important role in the production of a micro pattern coil.

Mechanical Properties Characteristics according to Heat Treatment Conditions of Medical Bone Plates by 3D Printing (3D프린팅 제조기반 골절합용 금속판의 열처리 조건에 따른 기계적 성능 특성)

  • Jung, Hyunwoo;Park, Sung Jun;Woo, Heon
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.116-123
    • /
    • 2022
  • This study analyzes the Mechanical properties of a medical bone plate by 3D printing. With the recent development of 3D printing technology, it is being applied in various fields. In particular, in the medical field, the use of 3D printing technology, which was limited to the existing orthosis and surgical simulation, has recently been used to replacement bones lost due to orthopedic implants using metal 3D printing. The field of application is increasing, such as replacement. However, due to the manufacturing characteristics of 3D printing, micro pores are generated inside the metal printing output, and it is necessary to reduce the pores and the loss of mechanical properties through post-processing such as heat treatment. Accordingly, the purpose of this study is to analyze the change in mechanical performance characteristics of medical metal plates manufactured by metal 3D printing under various conditions and to find efficient metal printing results. The specimen to be used in the experiment is a metal plate for trauma fixation applied to the human phalanx, and it was manufactured using the 'DMP Flex 100(3D Systems, USA), a metal 3D printer of DMLS (Direct Metal Laser Sintering) method. It was manufactured using the PBF(Powder Bed Fusion) method using Ti6Al4V ELI powder material.

A phantom production by using 3-dimentional printer and In-vivo dosimetry for a prostate cancer patient (3D 프린팅 기법을 통한 전립샘암 환자의 내부장기 팬텀 제작 및 생체내선량측정(In-vivo dosimetry)에 대한 고찰)

  • Seo, Jung Nam;Na, Jong Eok;Bae, Sun Myung;Jung, Dong Min;Yoon, In Ha;Bae, Jae Bum;Kwack, Jung Won;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose : The purpose of this study is to evaluate the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. Materials and Methods : The phantom is produced to equally describe prostate and rectum based on a 3D volume contour of an actual prostate cancer patient who is treated in Asan Medical Center by using a 3D printer (3D EDISON+, Lokit, Korea). CT(Computed tomography) images of phantom are aquired by computed tomography (Lightspeed CT, GE, USA). By using treatment planning system (Eclipse version 10.0, Varian, USA), treatment planning is established after volume of a prostate cancer patient is compared with volume of the phantom. MOSFET(Metal OXIDE Silicon Field Effect Transistor) is estimated to identify precision and is located in 4 measuring points (bladder, prostate, rectal anterior wall and rectal posterior wall) to analyzed treatment planning and measured value. Results : Prostate volume and rectum volume of prostate cancer patient represent 30.61 cc and 51.19 cc respectively. In case of a phantom, prostate volume and rectum volume represent 31.12 cc and 53.52 cc respectively. A variation of volume between a prostate cancer patient and a phantom is less than 3%. Precision of MOSFET represents less than 3%. It indicates linearity and correlation coefficient indicates from 0.99 ~ 1.00 depending on dose variation. Each accuracy of bladder, prostate, rectal anterior wall and rectal posterior wall represent 1.4%, 2.6%, 3.7% and 1.5% respectively. In- vivo dosimetry represents entirely less than 5% considering precision of MOSFET. Conclusion : By using a 3D printer, possibility of phantom production based on prostate is verified precision within 3%. effectiveness of In-vivo dosimetry is confirmed from a phantom which is produced by a 3D printer. In-vivo dosimetry is evaluated entirely less than 5% considering precision of MOSFET. Therefore, This study is confirmed the usefulness of a 3D printed phantom for in-vivo dosimetry of a prostate cancer patient. It is necessary to additional phantom production by a 3D printer and In-vivo dosimetry for other organs of patient.

  • PDF

Fatigue and mechanical properties of laser deposited maraging steel (레이저 적층 마레이징강의 기계적 특성 및 피로 특성)

  • Hong, Seok-Kwan
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.36-41
    • /
    • 2018
  • Metal 3D printing is very useful for making the injection molds containing complex conformal cooling channels. The most important issue of the 3D printed molds is cost and life cycle. However, powder bed fusion (PBF) methods are vulnerable to fatigue loading because of the presence of pores and rough surfaces. In the present study, the fatigue test was performed to obtain fatigue analysis input data for predicting the durability of a 3D printed injection mold core. The metal 3D printer used to manufacture the specimen was OPM250L from Sodick, and the metal powder material was maraging steel. The ultrasonic fatigue testing method was adopted for the fatigue test. A key advantage of the ultrasonic fatigue method is that $10^8{\sim}10^9$ long cycle test data or more could be obtained within a relatively short period. Based on the results of the experiment, the effect of heat treatment was negligible. However, there was an apparent difference in durability depending on the presence or absence of the surface treatment.

Structural Design of 3D Printer Nozzle with Superior Heat Dissipation Characteristics for Deposition of Materials with High Melting Point (고 용융점 소재의 압출적층성형을 위한 우수한 방열특성을 갖는 3차원 프린터 nozzle부 기구설계)

  • Kim, Wan-Chin;Lee, Sang-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.313-318
    • /
    • 2020
  • Since the engineering plastics having a melting point of higher than 300 degrees have a high mechanical rigidity, chemical resistance, friction and abrasion performance, those are being highlighted as metal replacement materials in various industries. In this study, 3D printer nozzle with excellent heat dissipation characteristics are designed and analytically verified to form engineering plastics with high melting points in 3D printers based on the melt-lamination modeling method. In order to insulate between the heat block heated to a melting point of filament material and the upper part of the nozzle where the filament is transferred, the heat brake part with low thermal conductivity was designed to have two separate parts, and a cooling fin structure is further applied to the heat brake part to lower steady-state temperature by air convection. Optimized structural design on FDM nozzle part reduces the temperature at the heat sink and at the end part of heat brake by 50% and 14% respectively, compared to the conventional BCnozzle structure.

Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center (금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구)

  • Jeong, Won-Young;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.

The Status of 3D Printing Industry and Researches on Exposure to Hazards When Using Metal Materials (3D프린팅 산업 및 금속소재 사용시 유해인자 노출 연구 현황)

  • Hae Dong Park;Leejun HUH
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We attempted to provide an overview of the laws and current state of the 3D printing industry in South Korea and around the world, using the annual industry surveys and the Wohler report. Additionally, we reviewed articles relating to the potential exposure to hazards associated with 3D printing using metal materials. In South Korea, there were 406 3D printing-related businesses, employing 2,365 workers, and the market size was estimated at 455.9 billion won in 2021. Globally, the average growth rate of the 3D printing industry market over the past 10 years was 27.4%, and the market size was estimated at $11.8 billion in 2019. The United States had the highest cumulative installation ratio of industrial 3D printers, followed by China, Japan, Germany, and South Korea. A total of 6,168 patents related to 3D printing were registered in the US between 2010 and 2019. Harmful factors during metal 3D printing was mainly evaluated in the powder bed fusion and direct energy deposition printing types, and there is a case of material extrusion type with metal additive filaments. The number, mass, size distribution, and chemical composition of particles were mainly evaluated. Particle concentration increases during the opening of the chamber or post-processing. However, operating the 3D printer in a ventilated chamber can reduce particle concentration to the background level. In order to have a safe and healthy environment for 3D printing, it is necessary to accumulate and apply knowledge through various studies.

Determination of Flow Stress and Cutting Force Prediction of Ti-6Al-4V Material for 3D Printer using S-K Constitutive Equation (S-K 구성방정식을 이용한 프린터용 3D Ti-6Al-4V 재료의 유동응력 결정 및 절삭력 예측)

  • Park, Dae-Gyoun;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.68-74
    • /
    • 2018
  • Study on the Ti-6Al-4V have been carried out using cutting simulation, and researches for cutting force and chip shape prediction have been actively conducted under various conditions. However, a 3D printer application method using Ti-6Al-4V metal powder material as a high-power method has been studied for the purpose of prototyping, mold modification and product modification while lowering material removal rate. However, in the case of products / parts made of 3D printers using powder materials, problems may occur in the contact surface during tolerance management and assembly due to the degradation of the surface quality. As a result, even if a 3D printer is applied, post-processing through cutting is essential for surface quality improvement and tolerance management. In the cutting simulation, the cutting force and the chip shape were predicted based on the Johnson-Cook composition equation, but the shape of the shear type chip was not predictable. To solve this problem, we added a damaging term or strain softening term to the Johnson-Cook constitutive equation to predict chip shape. In this thesis, we applied the constant value of the S-K equations to the cutting simulation to predict the cutting force and compare with the experimental data to verify the validity of the cutting simulation and analyzed the machining characterization by considering conditions.