• Title/Summary/Keyword: Metal

Search Result 26,800, Processing Time 0.048 seconds

Brain Metal Level in Ohjeoksan-Treated Rats (오적산(五積散)을 투여한 흰쥐의 뇌중 금속농도변화에 관한 연구)

  • Min Dae-Ki;Goh Seong-Kyu;Lee Sun-Dong;Wen Yong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.4 no.2
    • /
    • pp.242-257
    • /
    • 2000
  • This study was to investigate the metal accumulation from Ohjeoksan-Decoction to rat brain(Sprague Dawley). 1. In Control group, each metal concentration was within 26.65mg/kg. and in each experimental groups, was within 28.39mg/kg. And there were no significant metal concentration between control and experimental groups. Exceptionally, Cr and Ni level of control group was lower than experimental groups significantly. (p<0.05) and Cr and Ni level of experimental I group was lower than other experimental groups too. (p<0.05). But, Pb level of control group was higher than experimental groups significantly (p<0.05) Pb level of experimental I group was higher than other experimental groups(p<0.01) 2. In non-hazardous, hazardous and total metal concentration, there was no increase tendency in brain according to the high dose of OD(Ohjeoksan-Decoction) intake. Reversely, in experimental groups, hazardous metal concentration was decrease by high OD intake. (P<0.05) 3. Correlation among each metal in brain was various in each groups Briefly under the intake of Ohjeoksan-Decoction, that if very busy herb prescription , this study was defined within safety in brain metal level by P.O. during 10 days. But, there should be a more research about Pb increase by high dose OD intake

  • PDF

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

A study on the fracture strength of collarless metal-ceramic fixed partial dentures

  • Yoon, Jong-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.4
    • /
    • pp.134-141
    • /
    • 2010
  • PURPOSE. The objective of this study was to evaluate fracture strength of collarless metal-ceramic FPDs according to their metal coping designs. MATERIALS AND METHODS. Four different facial margin design groups were investigated. Group A was a coping with a thin facial metal collar, group B was a collarless coping with its facial metal to the shoulder, group C was a collarless coping with its facial metal 1 mm short of the shoulder, and group D was a collarless coping with its facial metal 2 mm short of the shoulder. Fifteen 3-unit collarless metal-ceramic FPDs were fabricated in each group. Finished FPDs were cemented to PBT (Polybutylene terephthalate) dies with resin cement. The fracture strength test was carried out using universal testing machine (Instron 4465, Instron Co., Norwood MA, USA) at a cross head speed of 0.5 mm/min. Aluminum foil folded to about 1 mm of thickness was inserted between the plunger tip and the incisal edge of the pontic. Vertical load was applied until catastrophic porcelain fracture occurred. RESULTS. The greater the bulk of unsupported facial shoulder porcelain was, the lower the fracture strength became. However, there were no significant differences between experimental groups (P > .05). CONCLUSION. All groups of collarless metal-ceramic FPDs had higher fracture strength than maximum incisive biting force. Modified collarless metal-ceramic FPD can be an alternative to all-ceramic FPDs in clinical situations.

A STUDY ON THE TENSILE BOND STRENGTH OF ETCHED BASE METALS (식각된 비 귀금속 합금과 법랑질간의 접착 인장강도에 대한 연구)

  • Park, Sang-Won;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.303-316
    • /
    • 1987
  • The purpose f this study was to evaluate the effect of resin film thickness on the tensile bond strength and to compare the tensile bond strengths of 4 differently treated metal surfaces. For the experiment, seventy metal specimens were cast with Verabond and divided into I, II, III, groups. The metal specimens in group I were electrolytically etched and cemented with Panavia under finger pressure. Cement film thickness was regulated with metal spacers. The metal specimens in Group II were treated by 4 methods, such as electrolytic etching method, salt-roughened method, EZ-oxisor method , chemical etching method and cemented with Panavia. In group III, electrolytically etched metal specimens were cemented with Hy-Bond. The etched surface of metal specimens and the cement film thickness were examined under the scanning electron microscope. Results were as follows; 1. The tensile bond strength showed no significant difference between $30{\mu}m,\;80{\mu}m,\;130{\mu}m$ film thicknessspecimens. 2. There was no significant difference in the tensile bond strength between the 4 differently treated metal specimens. 3. The tensile bond strength showed significant difference between Panavia and Hy-Bond. 4. Scanning electron microscope photograph revealed that tile interdendritic eutectic was removed in electrolytically etched metal surfaces hilt even dendritic arm was removed in Chemically etched metal surfaces. 5. The metal surfaces which were air-abraded with $50{\mu}m$ aluminum oxide showed roughness and small crack on scanning electron microscope photograph.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

The Contents of Heavy Metal in Air of Factories and Blood, Urine and Hair at Employees of I-ri Industrial Park Area (이리 공업단지의 공장공기 및 근로자의 혈액, 뇨, 모발 중의 중금속에 관한 조사)

  • 황인담;유일수
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.22-33
    • /
    • 1992
  • In Iri industrial area, Heavy metals in ait of the factories, 10 metal and 8 non-metal factories, were examined for ten months(from Feb. to Nov, 1991). The methals in blood, urin and hair of 232 employees who have worked in the factories were also examined at the same time The results are summarized as follows 1. Heavy metals Pb, Cd and Mn in the metal factories were 0.031mg/m$^{3}$, 0.0065mg/m$^{3}$, and 0. 035mg/m$^{3}$ respectively, but 0.017mg/m$^{3}$, 0.021mg/m$^{3}$ and 0.014mg/m$^{3}$ in non-metal factories. 2. Heavy metals such as Pb, Cd and Mn in blood from employees in the metal factories were measured : 22.36$\mu$g/dl, 0.27$\mu$g/dl and 1.26$\mu$g/dl respectively, The values in the non-metal factories were 19.84$\mu$g/dl, 0.21$\mu$g/dl and 1.24$\mu$g/dl. 3. Heavy metals such as Pb, Cd and Mn in urine from employees in the metal factories were measured 32.94$\mu$g/l, 0.16$\mu$g/dl, and 1.60$\mu$g/dl respectively, whereas the values in the non-metal factories were 28.79$\mu$g/l, 0.13$\mu$g/dl and 1.35$\mu$g/l. 4. Heavy metals such as Pb, Cd and Mn in hair from employees in the metal factories were measured 8.92mg/kg, 0.33mg/kg and 3.71mg/kg respectively, but 8.14mg/kg, 0.31mg/kg and 3.26 rng/kg in the non-metal factories.

  • PDF

THE EFFECT OF SUREACE TREATMENTS ON THE REBONDED RESIN-BONDED RETAINERS

  • Kim Sang-Pil;Kang Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.590-596
    • /
    • 2002
  • The resin : metal interface is at the basis of most bonding failures in resin-bonded prosthesis. Although debonding has been a problem with adhesive fixed partial dentures, various dentists classify them as long-term restorations. The advantages of resin-bonded fixed partial dentures include minimal tooth reduction and the possibility of rebonding. if resin-bonded protheses can be easily rebounded, it is of clinical importance to know if the lutingagents rebond as well the second time as they did originally. Several retentive systems for resin-to-metal bonding have recommended. Treatments such as electrolytic etching and silicone coating, despite the good result of bond strength, have proved to be time-consuming and technique-sensitive. Therefore a simple and more reliable method is desirable. This study evaluated the effect of metal surface treatments on the rebond strength of panavia 21 cement to a nickel-chromium(Ni-Cr) alloy. The samples were received the following surface treatments : Group No.1 (control or served as the control) treatment with sandblasting with 50um aluminum oxide and ultrasonically cleaned for 10minutes in double-deionized water, Group No.2 were no surface treatments. Group No.3 were treated with metal primer. Group No.4 were treated with sandblasting as previously described, and then metal priming. From the analysis of the results, the following conclusions were drawn. 1. Sandblasting and metal priming appears to be an effective method for treatment of metal after accidental debonding. 2. Group without surface treatment had significantly lower bond strengths compared with other groups. 3. The combination of sandblasting and metal priming may not develop superior bonding strengths compared with other techniques that used the Ni-Cr alloys. 4. Combination of cohesive and adhesive failures were the most common type observed. The results support the use of sandblasting as a viable procedure when rebonding accidentally lost adhesive partial denture. We concluded that sandblasting and metal priming of metal surface before bonding could provide the adequate bond strength during rebonding of resin-bonded fixed partial denture.

COMPARATIVE STUDY ON THE FRACTURE STRENGTH OF METAL-CERAMIC VERSUS COMPOSITE RESIN-VENEERED METAL CROWNS IN CEMENT-RETAINED IMPLANT-SUPPORTED CROWNS UNDER VERTICAL COMPRESSIVE LOAD

  • Pae, Ahran;Jeon, Kyung-A;Kim, Myung-Rae;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.295-302
    • /
    • 2007
  • Statement of problem. Fracture of the tooth-colored superstructure material is one of the main prosthetic complications in implant-supported prostheses. Purpose. The purpose of this in vitro study was to compare the fracture strength between the cement-retained implant-supported metal-ceramic crowns and the indirect composite resinveneered metal crowns under the vertical compressive load. Material and methods. Standard implants of external type (AVANA IFR 415 Pre-mount; Osstem Co., Busan, Korea) were embedded in stainless steel blocks perpendicular to their long axis. Customized abutments were fabricated using plastic UCLA abutments (Esthetic plastic cylinder; Osstem Co., Busan, Korea). Thirty standardized copings were cast with non-precious metal (Rexillium III, Pentron, Walling ford, Conn., USA). Copings were divided into two groups of 15 specimens each (n = 15). For Group I specimens, metal-ceramic crowns were fabricated. For Group II specimens, composite resin-veneered (Sinfony, 3M-ESPE, St. Paul, MN, USA) metal crowns (Sinfony-veneered crowns) were fabricated according to manufacturer's instructions. All crowns were temporary cemented and vertically loaded with an Instron universal testing machine (Instron 3366, Instron Corp., Norwood, MA, USA). The maximum load value (N) at the moment of complete failure was recorded and all data were statistically analyzed by independent sample t-test at the significance level of 0.05. The modes of failure were also investigated with visual analysis. Results. The fracture strength of Sinfony-veneered crowns ($2292.7{\pm}576.0N$) was significantly greater than that of metal-ceramic crowns ($1150.6{\pm}268.2N$) (P < 0.05). With regard to the failure mode, Sinfony-veneered crowns exhibited adhesive failure, while metal-ceramic crowns tended to fracture in a manner that resulted in combined failure. Conclusion. Sinfony-veneered crowns demonstrated a significantly higher fracture strength than that of metal-ceramic crowns in cement-retained implant-supported prostheses.

A Study on the Tensile Strength between Light-cured Relining Resin and Metal Denture Base (광중합형 이장재와 금속의치상 간의 결합력에 관한 연구)

  • Park, In-Chae;Lee, Joon-Kyu;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2000
  • The use of autopolymerizing-cured resin and light-cured resin for direct relining of complete and partial dentures has been popular. This investigation compared the adhesion of autopolymerizing-cured reline resin(Tokuso Rebase, Mild Rebaron) or light-cured reline resin(Mild Rebaron LC, Lighton-U) to metal base or resin base. Cylindrical samples were made from metal($Biosil^{(R)}$) or heat-cured resin(QC-20) and were prepared to produce a flat bonding surface. Cylindrical metal samples were roughened by scratch or by scratch and sandblast and were treated with primer(MR Bond) after scratch and sandblast. And then, liners were prossesed to the cylindrical metal or resin samples according to the manufacturer's recommendations so as to bond metal base or resin base. The specimens were tested in pure tension by using an Instron Univesal testing machine for the four direct reline resins. The results were as follows ; 1. In comparison with tensile bond strength of material relined on resin base or metal base, the case of resin base produced significantly higher tensile bond strength than the case of metal base. 2. Metal surface pretreatment or primer improved the tensile bond strength between the reline resin and the metal($Biosil^{(R)}$) base. 3. The tensile bond strength of Mild Rebaron LC relined on resin base or metal base were similar to those of the other reline resins.

  • PDF