• 제목/요약/키워드: Metal/ceramic Composite Structure

검색결과 31건 처리시간 0.02초

금속/세라믹 복합구조 선형 초음파 모터의 양방향 운동 (Bidirectional Motion of the Metal/Ceramic Composit Structure Linear Ultrasonic Motor)

  • 이재형;박태곤;김명호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, a single phase driven piezoelectric motor design was presented for linear motion. Two metal/ceramic composite actuators, a piezoelectric ring which was bonded to a metal endcap from one side, were used as the active elements of this motor. The motor was composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. Motors with 30.0[mm] and 35.0[mm] diameter were studied by finite element analysis and experiments. As results, the maximum speed of motor was obtained at resonant frequency. When the applied voltage of the motor increased, the speed was increased. Also, bidirectional motion of the motor was achieved by combining two motors which have different resonant frequency.

  • PDF

Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study

  • Rezaei, Mohammad Javad;Gerdooei, Mahdi;Nosrati, Hasan Ghaforian
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.737-745
    • /
    • 2020
  • Nowadays, composite plates are widely used as high-strength structures to fabricate a dynamic loading-resistant armours. In this study, the shock load is applied by an explosion of spherical TNT charge at a specified distance from the circular composite plate. The composite plate contains a two-layer ceramic-metal armour and a poly-methyl methacrylate (PMMA) target layer. The dynamic behavior of the composite armour has been investigated by measuring the transferred effective stress and maximum deflection into the target layer. For this purpose, the simulation of the blast loading upon the composite structure was performed by using the load-blast enhanced (LBE) procedure in Ls-Dyna software. The effect of main process parameters such as the thickness of layers, and scaled distance has been examined on the specific stiffness of the structure using response surface method. After validating the results by comparing with the experimental results, the optimal values for these parameters along with the regression equations for transferred effective stress and displacement to the target have been obtained. Finally, the optimal values of input parameters have been specified to achieve minimum transferred stress and displacement, simultaneously with reducing the weight of the structure.

도재주조용 합금에 있어서 알루미륨 첨가에 따른 metal-ceramic과의 결합력 증진에 관한 연구 (A Study on Improvement of Metal-Ceramic Bonding Strength by Addition of Aluminum to Casting Metal Alloy)

  • 이재원;민병국;한민수
    • 대한치과기공학회지
    • /
    • 제23권2호
    • /
    • pp.161-170
    • /
    • 2002
  • The Purpose of this study was to investigate the chemically improvement of metal-ceramics bond strength in the course of recasting Ni-Cr metal composite system with 10wt.%, 20wt.% and 30wt.% aluminum respectively. We have tested the bond strength, micro-structure, chemical composition of each metal composites and metal- ceramic bond interfaces by 3-point bending strength tester, SEM and EDS. We have made the conclusions through this study as follow: 1. The most suitable amount of aluminum to the Ni-Cr metal composite recasting is 20wt. % for improving metal-ceramics bond strength with debonding strength value of 49.54 kgf/mm2. 2. The aluminum must be changed to small spread alumina like phases and second aluminum-metal composites phases in the morphology of Ni-Cr metal composite system by adding during it's casting. These second phases have inclined functional oxide phases mixed with metal elements and they must take roll to improvement of metal-ceramics bond strength. 3. In the case of 30wt.% aluminum appended to Ni-Cr metal composite system, an excess of second inclined functional oxide phases produce cracks and spalling of them apart from it's base material. It must be a important factor of reduction of metal-ceramics bond strength.

  • PDF

A Novel Method to Fabricate Tough Cylindrical Ti2AlC/Graphite Layered Composite with Improved Deformation Capacity

  • Li, Aijun;Chen, Lin;Zhou, Yanchun
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.369-374
    • /
    • 2012
  • Based on the structure feature of a tree, a cylindrical $Ti_2AlC$/graphite layered composite has been fabricated through heat treating a graphite column and six close-matched thin wall $Ti_2AlC$ cylinders bonded with the $Ti_2AlC$ powders at $1300^{\circ}C$ and low oxygen partial pressure. SEM examination reveals that the bond interlayers between cylinders or that between cylinder and column are not fully dense without any crack formation. During the compressive test, the strain of the $Ti_2AlC$/graphite layered composite is about twice higher than that of the monolithic $Ti_2AlC$ ceramic, and the compressive strength of the layered composite is 348 MPa. The layered composite show the noncatastrophic fracture behaviors due to the debonding and shelling off of the layers, which are different from the monolithic $Ti_2AlC$ ceramic. The mechanism of the improved deformation capacity and noncatastrophic failure modes are attributed to the presence of the central soft graphite column and cracks deflection by the bond interlayers.

계면 개선을 통한 타이타늄 탄/질화물 금속 복합재료의 기계적 물성 향상 (Improvement of the mechanical properties of titanium carbonitride-metal composites by modification of interfaces)

  • 권한중
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.114-131
    • /
    • 2020
  • Fracture in the titanium carbonitride-metal composites occurs by crack propagation through the carbonitride grains or in the interfaces. Thus, intrinsic properties of the carbonitride need to be enhanced and the interfaces should be also modified to coherent structure to strengthen the composites. Especially, interfacial structure can be the main factor to determine the mechanical properties of titanium carbonitride-metal composites because the interfaces between carbonitride grains and metallic phase are weak parts due to heterogeneous nature of carbonitride and metallic phase. In this paper, methodologies for improving the interfacial structure of titanium carbonitride-metal composites are suggested. Total area of the interfaces can be reduced using solid solution type carbonitrides as raw materials instead of a mixture of various carbonitrides in the composites. Also, synthesis of titanium carbonitride-metal composite powders and the low-temperature sintering of the composite powders for short time can be the way for formation of coherent interfaces. The sintering of the composite powders for short time at low temperature can reduce the potential of formation of interfaces by dissolution and precipitation of carbonitride in the liquid metal. As a result of formation of coherent boundaries due to low-temperature and short-time sintering, interfaces between titanium carbonitride grains and metallic phase have the favorable structure for the enhanced fracture toughness. It is believed that the low-temperature sintering of solid solution type composite powders for short time can be the way to improve the low toughness of the titanium carbonitride-metal composites.

풍차형 초음파 선형 모터의 양방향 운동 (Bidirectional Motion of the Windmill Type Ultrasonic Linear Motor)

  • 이재형;박태곤;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제16권6호
    • /
    • pp.484-489
    • /
    • 2003
  • In this paper, a single phase driven piezoelectric motor design was presented for linear motion Two metal/ceramic composite actuators, a piezoelectric ring which was bonded to a metal endcap from one side, were used as the active elements of this motor. The motor was composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. Motors with 30 [mm] and 35 [mm] diameter were studied by finite element analysis and experiments. As results, the maximum speed of motor was obtained at resonance frequency. When the applied voltage of the motor increased, the speed was increased. Also, bidirectional motion of the motor was achieved by combining two motors which have different resonance frequency. But the characteristics of bidirectional motion were not equaled, because of the problem of reproduction on the fabrication and the experiment. If present motor is used at the auto-zoom device of a camera, it will have much advantage. Because the direct linear motion can be achieved with a simple structure of motor and no gearbox of total system.

금속-세라믹 복합구조 선형 초음파 모터의 특성 연구 (A Study on the Characteristics of Linear Ultrasonic Motor Using Metal-Ceramics Composite Structure)

  • 이재형;최명일;정동석;박태곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.80-83
    • /
    • 2002
  • In this study, a single phase driven piezoelectric motor design is presented for linear motion-metal/ ceramics composite structure. Using ANSYS finite element analysis software, mode shape of free motor was obtained to clarify the working principle of this motor. And characteristics of the motor was measured. The motor is composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. The motor with 25.0[mm] diameter was studied by finite element analysis and experimentation too. As a result, the motor was expressed the best speed in resonance frequency. And according as voltage of the motor increase, the speed increased by ratio.

  • PDF

금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구 (Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures)

  • 이현주;한도현;이두환
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.154-162
    • /
    • 2022
  • 알루미늄 (Al) 금속을 전구체 및 구조체로 이용, 수열 반응을 통하여 Al@Al2O3와 Al@Ni-Al LDH (LDH = layered double hydroxide) 코어-쉘 복합 구조체를 합성하였다. 제조된 구조체의 형상, 조성, 결정 구조는 수용액에 존재하는 이온들에 의하여 크게 영향을 받았으며, 이를 활용하여 다양한 특성의 촉매 구조체 유도가 가능하였다. Al@Ni-Al LDH 코어-쉘 구조체의 환원을 통하여 Ni 나노 입자가 고정화된 Ni/Al@Al2O3 촉매를 제조하였고, CO2 메탄화 반응에 적용하여 촉매의 특성을 평가하였다. Ni/Al@Al2O3 촉매는 전통적 incipient wetness impregnation 방법에 의하여 제조된 Ni/Al2O3 촉매에 비교하여 Ni 입자의 분산도와 균일성이 매우 높았으며 약 2 배 이상의 CO2 전환율로 높은 촉매적 활성과 더불어 구조의 안정성을 보여 주었다. 이러한 Ni/Al@Al2O3 구조체 촉매의 우수한 특성은 Al 금속을 기반으로 한 새로운 개념의 촉매 구조체 설계와 합성 방법의 타당성을 보여준다.

Static stability and of symmetric and sigmoid functionally graded beam under variable axial load

  • Melaibari, Ammar;Khoshaim, Ahmed B.;Mohamed, Salwa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.671-685
    • /
    • 2020
  • This manuscript presents impacts of gradation of material functions and axial load functions on critical buckling loads and mode shapes of functionally graded (FG) thin and thick beams by using higher order shear deformation theory, for the first time. Volume fractions of metal and ceramic materials are assumed to be distributed through a beam thickness by both sigmoid law and symmetric power functions. Ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM) symmetric distributions are proposed relative to mid-plane of the beam structure. The axial compressive load is depicted by constant, linear, and parabolic continuous functions through the axial direction. The equilibrium governing equations are derived by using Hamilton's principles. Numerical differential quadrature method (DQM) is developed to discretize the spatial domain and covert the governing variable coefficients differential equations and boundary conditions to system of algebraic equations. Algebraic equations are formed as a generalized matrix eigenvalue problem, that will be solved to get eigenvalues (buckling loads) and eigenvectors (mode shapes). The proposed model is verified with respectable published work. Numerical results depict influences of gradation function, gradation parameter, axial load function, slenderness ratio and boundary conditions on critical buckling loads and mode-shapes of FG beam structure. It is found that gradation types have different effects on the critical buckling. The proposed model can be effective in analysis and design of structure beam element subject to distributed axial compressive load, such as, spacecraft, nuclear structure, and naval structure.

에멀젼을 이용한 Al2O3-ZrO2 복합분체의 제조 : II. 에멀젼-가열석유 증발법 (Preparation of Al2O3-ZrO2 Composite Powders by the Use of mulsions : II. Emulsion-Hot Kerosene Drying Method)

  • 현상훈;백종규
    • 한국세라믹학회지
    • /
    • 제25권3호
    • /
    • pp.284-292
    • /
    • 1988
  • Alumina-zirconia composite powders for the purpose of improving fracture toughness and thermal shock resistance of alumina were prepared by the emulsion-kerosene drying method. The average particle size of composite powders was less then 1 $\mu\textrm{m}$ and their shapes were spherical. It was shown that the average particle size of composite powders decreased with the concentration of metal-salt in solution and the amount of span 80 added when preparing emulsions. The structure of all zirconia in composite powders heat-treated at 1200$^{\circ}C$ was a tetragonal form at room temperature. This result implied that fine zirconia particles were homogeneously dispersed in the alumina matrix.

  • PDF