• Title/Summary/Keyword: Metakaoline

Search Result 13, Processing Time 0.03 seconds

Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents (메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성)

  • Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Rheological Properties of Cement Pastes Containing Metakaoline (메타카올린을 혼합한 시멘트 페이스트의 유동특성)

  • 송종택;최해영
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1229-1234
    • /
    • 2003
  • The utilization of metakaoline as a mineral admixture for cement has received considerable attention in recent years. This paper investigates the rheological properties of cement pastes containing metakaoline in view of fluidity. The rheology of the paste is assessed by using a BROOKFIELD RVDV II + viscometer (SC4-21, 29) having cylindrical spindle. The results show the fluidity of cement pastes with metakaoline is increased by increasing W/S ratio and the dosage of superplastcizer. And also cement pastes with metakaoline as a partial replacement of cement show a dilatant behavior. Dilatancy is heavily influenced by W/S ratio and by the amount of metakaoline. However the thixotropy of the pastes is increased by silica fume.

A Study on Strength and Chloride Resistance of Concrete Using the Metakaolin (메타카올린 사용에 따른 콘크리트의 강도 및 염화물 저항성)

  • Kim, Myung-Yu;Yang, Eun-Ik;Yang, Joo-Kyoung;Park, Hae-Guun;Chun, Sang-Eun;Lee, Myeong-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.521-524
    • /
    • 2008
  • The requirement for durability of concrete is increasing recently as a high-rise concrete structure is built. For this reason, the concern about high performance concrete is being high. Recently, metakaoline to be profitable in economical aspect as well as to have strength and durability of level similar to silica fume is evaluated highly as new admixture. In this study, the workability, the strength, the chloride resistance and the air-void structure more than 50${\mu}m$ are evaluated by comparing both metakaolin and silica fume. According to the results, when the metakaoline is compared with silica fume in properties of fresh concrete, it seems to the similar level of properties. Metakaoline concrete showed the highest value in the strength property. And, it is showed that replacement of the metakaoline more than 10% is superior than both silica fume and OPC in long and short-term chloride resistance. In conclusion, replacement of the metakaoline more than 10% is the most excellent performance in terms of strength and chloride resistance

  • PDF

A Study for Microstructure and Durability of Metakaolin Concrete (메타카올린 콘크리트의 미세 공극구조 및 내구성에 관한 연구)

  • Kim, Myung-Yu;Yang, Eun-Ik;Yang, Joo-Kyoung;Park, Hae-Geun;Chun, Sang-Eun;Lee, Myeong-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.417-420
    • /
    • 2008
  • The requirement for durability of concrete is increasing recently as a large-scale concrete structure is built. For this reason, the concern about high-durable concrete is being high. Recently, metakaoline to be profitable in economical aspect as well as to have strength and durability of level similar to silica fume is evaluated highly as new admixture. In this study, the scaling, the drying shrinkage, the chloride resistance and the air-void structure are compared for both metakaolin and silica fume concrete. According to the results, the replacement of metakaoline improved the resistance of chloride penetration, freezing and thawing in concrete. On the other hand, as metakaolin was replaced to 10%, it was similar level with OPC in the property of scaling. It was showed that replacement of only metakaoline was similar with OPC in the drying shrinkage. However, MS5 reduced the drying shrinkage about 10%. In conclusion, replacement of the metakaoline 10% is the most excellent performance in terms of durability of concrete.

  • PDF

Preparation of Spacer for Safety Improvement of Architecture (건축물의 안전성 향상을 위한 Spacer의 제조)

  • 홍성수;강기준;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.45-50
    • /
    • 1998
  • The low grade domestic kaoline, such as pink-C and white-D, was converted to metakaoline, which has pozzolanic reactivity by heat treatment in the temperature range of $600^{\circ}C$ to 100$0^{\circ}C$ for preparing the spacer. The spacer was used for supporting the reinforced steel rod during construction to improve the safety of architecture. Pink-C and white-D were completely dehydroxylated when burnt at 80$0^{\circ}C$ for 1 hour and converted to metakaoline. The compressive strengths of specimens added calcined pink-C were lower than those of press molding mortar products inspite of calcining conditions. When white-D with calcined 80$0^{\circ}C$ and 100$0^{\circ}C$ for 1 hour was mixed 30% in the weight ratio of cement, the specimens cured 28 days had 338 $kg/cm^2$ and 347 $kg/cm^2$ of compressive strengths, respectively.

  • PDF

Rheological Properties of Cement Pastes Containing Mineral Admixtures and Superplasticizer (광물질 혼합재와 고유동화제를 첨가한 시멘트 페이스트의 유동특성)

  • Song, Jong-Taek;Shin, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.737-742
    • /
    • 2005
  • Rheological properties of ordinary portland cement (OPC) containing metakaoline (MK), granulated blast furnace slag (GBS) and polycarboxylate type superplasticizer (PCA) were investigated using a mini-slump test, sedimentation test and viscometer. Fluidity of cement pastes containing MK (OPC-MK, OPC-MK-GBS systems) with PCA were higher than those of the cement pastes without MK(OPC, OPC-GBS systems). Colloid suspensions with $0.1\%$ PCA were changed from stable sedimentation behaviors to flocculation behaviors in the OPC-MK, OPC-GBS and OPC-MK-GBS systems. The colloid suspensions showed stable sedimentation behaviors with PCA greater than $0.2\%$. The OPC system showed shear thinning behavior. However, the other systems showed weak shear thinning behaviors with PCA. Rheological properties of cement pastes were improved when MK and GBS were contained together. The rheological properties of OPC-MK, OPC-GBS and OPC-MK-GBS systems were improved by PCA added greater than $0.2\%$.

An Experimental Study on the Geopolymer for Wood Wool Ceramic Board (목모 패널용 Geopolymer Binder 개발에 관한 실험적 연구)

  • Park Dong Cheol;Lee Sea Hyun;Song Tae Hyeob;Shim Jong Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.711-714
    • /
    • 2005
  • This paper focused on development of geopolymer for wood wool ceramic board. Geopolymer can substitude ordinary portland cement and its accelerator of wood wool cement board as inorganic polymer. In this study, what we would obtain geopolymer's properties such as initial setting time(KS L 5108), flow(KS L 5102) and compressive strength of 3days aged(KS L 5105), was less than 1 hour, more than $110\%$, more than 40Mpa. Geopolymer have three essential materials called filler, hardener and geopolymer liquor. So, We applied filler by quartz, hardener by blast furnace slag powder, metakaoline and fly ash, geopolymer liquor by NaOH, KOH and sodium silicate solution. As result of this experiment, what we could obtain best fitted geopolymer's properties such as initial setting time, flow and compressive strength of 3days aged, was 45min, $116\%$ and 43.6Mpa. This result can be applicable to commercial wood wool ceramic board.

  • PDF

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.