• 제목/요약/키워드: Metaheuristic Optimization

검색결과 134건 처리시간 0.022초

Optimal PID Controller Design for DC Motor Speed Control System with Tracking and Regulating Constrained Optimization via Cuckoo Search

  • Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.460-467
    • /
    • 2018
  • Metaheuristic optimization approach has become the new framework for control synthesis. The main purposes of the control design are command (input) tracking and load (disturbance) regulating. This article proposes an optimal proportional-integral-derivative (PID) controller design for the DC motor speed control system with tracking and regulating constrained optimization by using the cuckoo search (CS), one of the most efficient population-based metaheuristic optimization techniques. The sum-squared error between the referent input and the controlled output is set as the objective function to be minimized. The rise time, the maximum overshoot, settling time and steady-state error are set as inequality constraints for tracking purpose, while the regulating time and the maximum overshoot of load regulation are set as inequality constraints for regulating purpose. Results obtained by the CS will be compared with those obtained by the conventional design method named Ziegler-Nichols (Z-N) tuning rules. From simulation results, it was found that the Z-N provides an impractical PID controller with very high gains, whereas the CS gives an optimal PID controller for DC motor speed control system satisfying the preset tracking and regulating constraints. In addition, the simulation results are confirmed by the experimental ones from the DC motor speed control system developed by analog technology.

Metaheuristic-hybridized multilayer perceptron in slope stability analysis

  • Ye, Xinyu;Moayedi, Hossein;Khari, Mahdy;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.263-275
    • /
    • 2020
  • This research is dedicated to slope stability analysis using novel intelligent models. By coupling a neural network with spotted hyena optimizer (SHO), salp swarm algorithm (SSA), shuffled frog leaping algorithm (SFLA), and league champion optimization algorithm (LCA) metaheuristic algorithms, four predictive ensembles are built for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The data used to develop the ensembles are provided from a vast finite element analysis. After creating the proposed models, it was observed that the best population size for the SHO, SSA, SFLA, and LCA is 300, 400, 400, and 200, respectively. Evaluation of the results showed that the combination of metaheuristic and neural approaches offers capable tools for estimating the FOS. However, the SSA (error = 0.3532 and correlation = 0.9937), emerged as the most reliable optimizer, followed by LCA (error = 0.5430 and correlation = 0.9843), SFLA (error = 0.8176 and correlation = 0.9645), and SHO (error = 2.0887 and correlation = 0.8614). Due to the high accuracy of the SSA in properly adjusting the computational parameters of the neural network, the corresponding FOS predictive formula is presented to be used as a fast yet accurate substitution for traditional methods.

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

An Ant Colony Optimization Approach for the Two Disjoint Paths Problem with Dual Link Cost Structure

  • 정지복;서용원
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.308-311
    • /
    • 2008
  • The ant colony optimization (ACO) is a metaheuristic inspired by the behavior of real ants. Recently, ACO has been widely used to solve the difficult combinatorial optimization problems. In this paper, we propose an ACO algorithm to solve the two disjoint paths problem with dual link cost structure (TDPDCP). We propose a dual pheromone structure and a procedure for solution construction which is appropriate for the TDPDCP. Computational comparisons with the state-of-the-arts algorithms are also provided.

  • PDF

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

하모니 탐색 알고리즘의 선도 연구에 관한 최첨단 기술 동향과 사례 분석 (State of the Art Technology Trends and Case Analysis of Leading Research in Harmony Search Algorithm)

  • 김은성;신승수;김용혁;윤유림
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.81-90
    • /
    • 2021
  • 실세계에는 다양한 최적화 문제가 존재하고 이를 해결하기 위한 연구가 지속되고 있다. 최적화 문제는 목적 함수의 결과 값을 최대 혹은 최소로 만드는 파라미터의 조합을 찾는 문제이다. 하모니 탐색은 이러한 최적화 문제 해결을 위한 인구 기반 메타휴리스틱 알고리즘으로 재즈 음악의 즉흥 연주를 모방하여 고안되었다. 하모니 탐색은 현재 토목, 컴퓨터, 에너지, 의료, 수질 공학 등 다양한 분야의 최적화 문제에 활발히 적용되고 있다. 하모니 탐색은 동작 원리가 간단하고 제약조건이 있는 최적화 문제에서 빠르게 동작한다는 장점이 있다. 특히 경험적 도함수를 통해 해를 개선하여 낮은 반복 횟수로 높은 정확도를 보인 사례들이 존재한다. 본 논문에서는 하모니 탐색의 동작 원리를 설명하고 최근 3년간 수행된 주요 연구들을 분류, 각 분류에 따라 요약 및 소개, 향후 연구 방향을 제시한다. 분류는 분야별 리뷰, 알고리즘 분석 및 이론, 실세계 문제에 대한 적용으로 나누고 실세계 문제에 대한 적용은 다른 메타휴리스틱 알고리즘과의 결합 여부, 최적화 목적에 따라 분류하여 설명한다.

Economic Dispatch Using Hybrid Particle Swarm Optimization with Prohibited Operating Zones and Ramp Rate Limit Constraints

  • Prabakaran, S.;Senthilkuma, V.;Baskar, G.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1441-1452
    • /
    • 2015
  • This paper proposes a new Hybrid Particle Swarm Optimization (HPSO) method that integrates the Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) techniques. The proposed method is applied to solve Economic Dispatch(ED) problems considering prohibited operating zones, ramp rate limits, capacity limits and power balance constraints. In the proposed HPSO method, the best features of both EP and PSO are exploited, and it is capable of finding the most optimal solution for the non-linear optimization problems. For validating the proposed method, it has been tested on the standard three, six, fifteen and twenty unit test systems. The numerical results show that the proposed HPSO method is well suitable for solving non-linear economic dispatch problems, and it outperforms the EP, PSO and other modern metaheuristic optimization methods reported in the recent literatures.

Predicting the splitting tensile strength of concrete using an equilibrium optimization model

  • Zhao, Yinghao;Zhong, Xiaolin;Foong, Loke Kok
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.81-93
    • /
    • 2021
  • Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu;Liu, LiLi;Zhu, Yongjun;Wang, Peng;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.421-432
    • /
    • 2022
  • Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.

Design of Smart City Considering Carbon Emissions under The Background of Industry 5.0

  • Fengjiao Zhou;Rui Ma;Mohamad Shaharudin bin Samsurijan;Xiaoqin Xie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권4호
    • /
    • pp.903-921
    • /
    • 2024
  • Industry 5.0 puts forward higher requirements for smart cities, including low-carbon, sustainable, and people-oriented, which pose challenges to the design of smart cities. In response to the above challenges, this study introduces the cyber-physical-social system (CPSS) and parallel system theory into the design of smart cities, and constructs a smart city framework based on parallel system theory. On this basis, in order to enhance the security of smart cities, a sustainable patrol subsystem for smart cities has been established. The intelligent patrol system uses a drone platform, and the trajectory planning of the drone is a key problem that needs to be solved. Therefore, a mathematical model was established that considers various objectives, including minimizing carbon emissions, minimizing noise impact, and maximizing coverage area, while also taking into account the flight performance constraints of drones. In addition, an improved metaheuristic algorithm based on ant colony optimization (ACO) algorithm was designed for trajectory planning of patrol drones. Finally, a digital environmental map was established based on real urban scenes and simulation experiments were conducted. The results show that compared with the other three metaheuristic algorithms, the algorithm designed in this study has the best performance.