• 제목/요약/키워드: Metaheuristic Optimization

검색결과 131건 처리시간 0.028초

Improved thermal exchange optimization algorithm for optimal design of skeletal structures

  • Kaveh, A.;Dadras, A.;Bakhshpoori, T.
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.263-278
    • /
    • 2018
  • Thermal Exchange Optimization (TEO) is a newly developed algorithm which mimics the thermal exchange between a solid object and its surrounding fluid. In this paper, an improved version of the TEO is developed to fix the shortcomings of the standard version. To demonstrate the viability of the new algorithm, the CEC 2016's single objective problems are considered along with the discrete size optimization of benchmark skeletal structures. Problem specific constraints are handled using a fly-back mechanism. The results show the validity of the improved TEO method compared to its standard version and a number of well-known algorithms.

하이브리드 메타휴리스틱 기법을 사용한 트러스 위상 최적화 (Truss Topology Optimization Using Hybrid Metaheuristics)

  • 이승혜;이재홍
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.89-97
    • /
    • 2021
  • This paper describes an adaptive hybrid evolutionary firefly algorithm for a topology optimization of truss structures. The truss topology optimization problems begins with a ground structure which is composed of all possible nodes and members. The optimization process aims to find the optimum layout of the truss members. The hybrid metaheuristics are then used to minimize the objective functions subjected to static or dynamic constraints. Several numerical examples are examined for the validity of the present method. The performance results are compared with those of other metaheuristic algorithms.

모방 화음탐색법의 개발 : 흉내내기에 의한 최적화 성능 향상 (Development of Copycat Harmony Search : Adapting Copycat Scheme for the Improvement of Optimization Performance)

  • 전상훈;최영환;정동휘;김중훈
    • 한국산학기술학회논문지
    • /
    • 제19권9호
    • /
    • pp.304-315
    • /
    • 2018
  • 화음탐색법은 근래에 개발된 메타휴리스틱 알고리즘 중 하나로, 다양한 분야의 최적화 문제에 적용되어 많은 연구자들에게 널리 알려진 바 있다. 하지만 최적화 문제의 복잡성이 날로 증가하여 기존 화음탐색법으로는 최적해를 효율적으로 탐색할 수 없는 경우가 증가하고 있다. 이를 개선하기 위해 기존 매개변수 설정의 변경 및 다른 메타휴리스틱 알고리즘의 특성과의 융합 등을 통해 화음탐색법의 성능을 향상시킨 연구가 다수 존재한다. 본 연구에서는 기존 화음탐색법의 매개변수설정 방법과 해탐색 성능을 개선한 모방 화음탐색법 (Copycat Harmony Search, CcHS)을 제시하였다. 모방 화음탐색법의 성능을 검증하기 위하여 대표적인 수학적 최적화 문제에 적용하여 기존에 개발되었던 향상된 형태의 화음탐색법 알고리즘들과 결과를 비교하였다. 모방 화음탐색법은 모든 수학적 최적화 문제에서 다른 알고리즘보다 전역해에 가까운 해를 찾음으로써 최적해 탐색의 효율성을 입증하였다. 또한, 알고리즘의 공학문제의 적용성을 분석하기 위하여 기존에 널리 적용되었던 상수도관망 최적설계 문제에 CcHS를 적용하였다. 그 결과 본 연구에서는 기존 화음탐색법이 제안한 최소 설계비용보다 약 21.91% 더 저렴한 비용을 제시하였다.

An efficient multi-objective cuckoo search algorithm for design optimization

  • Kaveh, A.;Bakhshpoori, T.
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.87-103
    • /
    • 2016
  • This paper adopts and investigates the non-dominated sorting approach for extending the single-objective Cuckoo Search (CS) into a multi-objective framework. The proposed approach uses an archive composed of primary and secondary population to select and keep the non-dominated solutions at each generation instead of pairwise analogy used in the original Multi-objective Cuckoo Search (MOCS). Our simulations show that such a low computational complexity approach can enrich CS to incorporate multi-objective needs instead of considering multiple eggs for cuckoos used in the original MOCS. The proposed MOCS is tested on a set of multi-objective optimization problems and two well-studied engineering design optimization problems. Compared to MOCS and some other available multi-objective algorithms such as NSGA-II, our approach is found to be competitive while benefiting simplicity. Moreover, the proposed approach is simpler and is capable of finding a wide spread of solutions with good coverage and convergence to true Pareto optimal fronts.

Simultaneous analysis, design and optimization of trusses via force method

  • Kaveh, A.;Bijari, Sh.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.233-241
    • /
    • 2018
  • In this paper, the Colliding Bodies Optimization (CBO), Enhanced Colliding Bodies Optimization (ECBO) and Vibrating Particles System (VPS) algorithms and the force method are used for the simultaneous analysis and design of truss structures. The presented technique is applied to the design and analysis of some planer and spatial trusses. An efficient method is introduced using the CBO, ECBO and VPS to design trusses having members of prescribed stress ratios. Finally, the minimum weight design of truss structures is formulated using the CBO, ECBO and VPS algorithms and applied to some benchmark problems from literature. These problems have been designed by using displacement method as analyzer, and here these are solved for the first time using the force method. The accuracy and efficiency of the presented method is examined by comparing the resulting design parameters and structural weight with those of other existing methods.

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.

Truss optimization with dynamic constraints using UECBO

  • Kaveh, A.;Ilchi Ghazaan, M.
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.119-138
    • /
    • 2016
  • In this article, hybridization of enhanced colliding bodies optimization (ECBO) with upper bound strategy (UBS) that is called UECBO is proposed for optimum design of truss structures with frequency constraints. The distinct feature of the proposed algorithm is that it requires less computational time while preserving the good accuracy of the ECBO. Four truss structures with frequency limitations selected from the literature are studied to verify the viability of the algorithm. This type of problems is highly non-linear and non-convex. The numerical results show the successful performance of the UECBO algorithm in comparison to the CBO, ECBO and some other metaheuristic optimization methods.

Optimization of fuzzy controller for nonlinear buildings with improved charged system search

  • Azizi, Mahdi;Ghasemi, Seyyed Arash Mousavi;Ejlali, Reza Goli;Talatahari, Siamak
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.781-797
    • /
    • 2020
  • In recent years, there is an increasing interest to optimize the fuzzy logic controller with different methods. This paper focuses on the optimization of a fuzzy logic controller applied to a seismically excited nonlinear building. In most cases, this problem is formulated based on the linear behavior of the structure, however in this paper, four sets of objective functions are considered with respect to the nonlinear responses of the structure as the peak interstory drift ratio, the peak level acceleration, the ductility factor and the maximum control force. The Improved Charged System Search is used to optimize the membership functions and the rule base of the fuzzy controller. The obtained results of the optimized and the non-optimized fuzzy controllers are compared to the uncontrolled responses of the structure. Also, the performance of the utilized method is compared with various classical and advanced optimization algorithms.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • 제29권 6호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Rashidi, Shima;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • 제30권6호
    • /
    • pp.489-502
    • /
    • 2022
  • In this study, a Gaussian process regression (GPR) model as well as six GPR-based metaheuristic optimization models, including GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, and GPR-SSO, were developed to predict fly-rock distance in the blasting operation of open pit mines. These models included GPR-SCA, GPR-SSO, GPR-MVO, and GPR. In the models that were obtained from the Soungun copper mine in Iran, a total of 300 datasets were used. These datasets included six input parameters and one output parameter (fly-rock). In order to conduct the assessment of the prediction outcomes, many statistical evaluation indices were used. In the end, it was determined that the performance prediction of the ML models to predict the fly-rock from high to low is GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, GPR-SSO, and GPR with ranking scores of 66, 60, 54, 46, 43, 38, and 30 (for 5-fold method), respectively. These scores correspond in conclusion, the GPR-PSO model generated the most accurate findings, hence it was suggested that this model be used to forecast the fly-rock. In addition, the mutual information test, also known as MIT, was used in order to investigate the influence that each input parameter had on the fly-rock. In the end, it was determined that the stemming (T) parameter was the most effective of all the parameters on the fly-rock.