• 제목/요약/키워드: Metabolome

검색결과 70건 처리시간 0.023초

Development of a Meta-Information System for Microbial Resources

  • Yu Jae-Woo;Chung Won-Hyong;Sohn Tae-Kwon;Park Yong-Ha;Kim Hong-Ik
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.178-183
    • /
    • 2006
  • Microbes are one of the most important bioresources in bioindustry and provide high economic values. Although there are currently about 6,000 bacterial species with validly published names, microbiologists generally assume that the number may account for less than 1% of the bacterial species present on Earth. To discover the remaining species, studies of metagenomes, metabolomes, and proteomes related to microbes have recently been carried out in various fields. We have constructed an information system that integrates various data on microbial resources and manages bioinformation to support efficient research of microorganisms. We have designated this system 'Bio-Meta Information System (Bio-MIS).' Bio-MIS consists of an integrated microbial resource database, a microbial resource input system, an integrated microbial resource search engine, a microbial resource online distribution system, a portal service, and management via the Internet. In the future, this system is expected to be connected with various public databases. We plan to implement useful bioinformatics software for analyzing microbial genome resources. The Web site is accessible at http://biomis.probionic.com.

Application of metabolic profiling for biomarker discovery

  • Hwang, Geum-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2007년도 Proceedings of The Convention
    • /
    • pp.19-27
    • /
    • 2007
  • An important potential of metabolomics-based approach is the possibility to develop fingerprints of diseases or cellular responses to classes of compounds with known common biological effect. Such fingerprints have the potential to allow classification of disease states or compounds, to provide mechanistic information on cellular perturbations and pathways and to identify biomarkers specific for disease severity and drug efficacy. Metabolic profiles of biological fluids contain a vast array of endogenous metabolites. Changes in those profiles resulting from perturbations of the system can be observed using analytical techniques, such as NMR and MS. $^1H$ NMR was used to generate a molecular fingerprint of serum or urinary sample, and then pattern recognition technique was applied to identity molecular signatures associated with the specific diseases or drug efficiency. Several metabolites that differentiate disease samples from the control were thoroughly characterized by NMR spectroscopy. We investigated the metabolic changes in human normal and clinical samples using $^1H$ NMR. Spectral data were applied to targeted profiling and spectral binning method, and then multivariate statistical data analysis (MVDA) was used to examine in detail the modulation of small molecule candidate biomarkers. We show that targeted profiling produces robust models, generates accurate metabolite concentration data, and provides data that can be used to help understand metabolic differences between healthy and disease population. Such metabolic signatures could provide diagnostic markers for a disease state or biomarkers for drug response phenotypes.

  • PDF

LM 미생물의 환경영향 모사: 대사체와 토양미생물군 분석 (Simulative Study of Effects of LM Microorganism on Environment: Analyses of Metabolomes and Soil Microbial Communities)

  • 이지훈;기민규
    • 한국환경농학회지
    • /
    • 제38권3호
    • /
    • pp.197-204
    • /
    • 2019
  • BACKGROUND: Living modified microorganisms (LMMs) have been focused in two very different aspects of positive and negative effects on ecology and human health. As a model experiment, wild type and a foreign origin gene-harboring modified E. coli strains were subjected to comparison of their metabolomes and potential effects on soil microbiota in the laboratory sets. This study assumes the unintentional release of LMMs and tries to suggest potential effects on the soil microbiota even at minimal settings. METHODS AND RESULTS: Metabolomes from the wild type and LM E. coli were analyzed by NMR and the profiles were compared. In the laboratory soil experiments, the two types of E. coli were added to the soils and monitored for the bacterial community compositions. Those metabolomic profiles did not show significant differences. The microbial community structures from the time series soil DNAs for both the sets using wild type and LMO also did not indicate significant changes, but minor by the addition of foreign organisms regardless of wild or LMO. CONCLUSION: Even if the recombinant microorganism (LMO) is released into the soil environment, the survival of microorganisms in the environment would be one of the major factors for the transfers of foreign genes to other organisms and diffusion into the soil environment.

Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics

  • Robie, Vasquez;Ju Kyoung, Oh;Ji Hoon, Song;Dae-Kyung, Kang
    • Journal of Animal Science and Technology
    • /
    • 제64권4호
    • /
    • pp.671-695
    • /
    • 2022
  • The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.

4차 산업혁명 시대 맞춤형 식이 (Personalized Diet in the Era of the 4th Industrial Revolution)

  • 박수현;박재호
    • 한국식생활문화학회지
    • /
    • 제38권4호
    • /
    • pp.185-190
    • /
    • 2023
  • This paper elucidates the novel direction of food research in the era of the 4th Industrial Revolution characterized by personalized approaches. Since conventional approaches for identifying novel food materials for health benefits are expensive and time-consuming, there is a need to shift towards AI-based approaches which offer more efficient and cost-effective methods, thus accelerating progress in the field of food science. However, relevant research papers in this field present several challenges such as regional and ethnic differences and lack of standardized data. To tackle this problem, our study proposes to address the issues by acquiring and normalizing food and biological big data. In addition, the paper demonstrates the association between heath status and biological big data such as metabolome, epigenome, and microbiome for personalized healthcare. Through the integration of food-health-bio data with AI technologies, we propose solutions for personalized healthcare that are both effective and validated.

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.

Protective Effects of Lacticaseibacillus rhamnosus IDCC3201 on Motor Functions and Anxiety Levels in a Chronic Stress Mouse Model

  • Jae Gwang Song;Daye Mun;Bomi Lee;Minho Song;Sangnam Oh;Jun-Mo Kim;Jungwoo Yang;Younghoon Kim;Hyung Wook Kim
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1044-1054
    • /
    • 2023
  • Growing evidence indicates a crucial role of the gut microbiota in physiological functions. Gut-brain axis imbalance has also been associated with neuropsychiatric and neurodegenerative disorders. Studies have suggested that probiotics regulate the stress response and alleviate mood-related symptoms. In this study, we investigated the effects of the probiotic Lacticaseibacillus rhamnosus IDCC3201 (L3201) on the behavioral response and fecal metabolite content in an unpredictable chronic mild stress (UCMS) mouse model. Our study shows that chronic stress in mice for three weeks resulted in significant changes in behavior, including lower locomotor activity, higher levels of anxiety, and depressive-like symptoms, compared to the control group. Metabolomic analysis demonstrated that disrupted fecal metabolites associated with aminoacyl-tRNA biosynthesis and valine, leucine, and isoleucine biosynthesis by UCMS were restored with the administration of L3201. Oral administration of the L3201 ameliorated the observed changes and improved the behavioral alterations along with fecal metabolites, suggesting that probiotics play a neuroprotective role.

Multi-Omics Approaches to Improve Meat Quality and Taste Characteristics

  • Young-Hwa Hwang;Eun-Yeong Lee;Hyen-Tae Lim;Seon-Tea Joo
    • 한국축산식품학회지
    • /
    • 제43권6호
    • /
    • pp.1067-1086
    • /
    • 2023
  • With rapid advances in meat science in recent decades, changes in meat quality during the pre-slaughter phase of muscle growth and the post-slaughter process from muscle to meat have been investigated. Commonly used techniques have evolved from early physicochemical indicators such as meat color, tenderness, water holding capacity, flavor, and pH to various omic tools such as genomics, transcriptomics, proteomics, and metabolomics to explore fundamental molecular mechanisms and screen biomarkers related to meat quality and taste characteristics. This review highlights the application of omics and integrated multi-omics in meat quality and taste characteristics studies. It also discusses challenges and future perspectives of multi-omics technology to improve meat quality and taste. Consequently, multi-omics techniques can elucidate the molecular mechanisms responsible for changes of meat quality at transcriptome, proteome, and metabolome levels. In addition, the application of multi-omics technology has great potential for exploring and identifying biomarkers for meat quality and quality control that can make it easier to optimize production processes in the meat industry.

Investigating the Metabolism of Clubroot-Infected Plants by Integrating Metabolomic and Transcriptomic Approaches

  • Yahaya, Nazariyah;Malinowski, Robert;Burrell, Mike;Walker, Heather;Petriacq, Pierre;Rolfe, Stephen
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.27-27
    • /
    • 2015
  • Clubroot (Plasmodiophora brassicae) is a serious agricultural problem affecting Brassica crop production worldwide. It also infects the model plant Arabidopsis thaliana. During infection, this biotrophic pathogen manipulates the development and metabolism of its host leading to the development of galls in the root and hypocotyl. In turn, its own development is strongly influenced by the host. The aim of this study is to investigate the metabolism of clubroot-infected plants using a combination of transcriptomic and metabolomic approaches. We have used direct injection mass spectrometry to obtain a metabolic fingerprint of when changes in the metabolome occur and linked this with changes in host and pathogen gene expression. We have identified alterations in carbohydrate metabolism that occur during P. brassicae infection of A. thaliana plants. Transcriptomic analysis showed that host genes associated with sugar transport and metabolism were induced during gall formation and that the pathogen also expresses genes associated with these processes. We have examined the impact of inactivating host sucrose synthase, cytosolic invertase and sugar permeases on gall formation, identifying host genes that are required for gall formation. We have also explored how sugar status is changed in root tissue, developing and mature leaf during infection of wild type and mutant plants.

  • PDF

Alteration of the Metabolome Profile in Endothelial Cells by Overexpression of miR-143/145

  • Wang, Wenshuo;Yang, Ye;Wang, Yiqing;Pang, Liewen;Huang, Jiechun;Tao, Hongyue;Sun, Xiaotian;Liu, Chen
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.572-578
    • /
    • 2016
  • Communication between endothelial cells (ECs) and smooth muscle cells (SMCs) via miR-143/145 clusters is vital to vascular stability. Previous research demonstrates that miR-143/145 released from ECs can regulate SMC proliferation and migration. In addition, a recent study has found that SMCs also have the capability of manipulating EC function via miR-143/145. In the present study, we artificially increased the expression of miR-143/145 in ECs, to mimic a similar change caused by miR-143/145 released by SMCs, and applied untargeted metabolomics analysis, aimed at investigating the consequential effect of miR-143/145 overexpression. Our results showed that miR-143/145 overexpression alters the levels of metabolites involved in energy production, DNA methylation, and oxidative stress. These changed metabolites indicate that metabolic pathways, such as the SAM cycle and TCA cycle, exhibit significant differences from the norm with miR-143/145 overexpression.