• Title/Summary/Keyword: Metabolites

Search Result 2,596, Processing Time 0.027 seconds

Development of a GC-MS Diagnostic Method with Computer-aided Automatic Interpretation for Metabolic Disorders (GC-MS 크로마토그램의 컴퓨터 자동해석을 이용한 유전성 대사질환의 진단법 개발)

  • Yoon, Hye-Ran
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.40-51
    • /
    • 2006
  • Purpose: A personal computer-based system was developed for automated metabolic profiling of organic aciduria and aminoacidopathy by gas chromatography-mass spectrometry and data interpretation for the diagnosis of metabolic disorders Methods: For automatic data profiling and interpretation, we compiled retention time, two target ions and their intensity ratio for 77 organic acids and 13 amino acids metabolites. Metabolites above the cut-off values were flagged as abnormal compounds. The data interpretation was a based on combination of flagged metabolites. Diagnostic or index metabolites were categorized into three groups, "and", "or" and "NO" compiled for each disorder to improve the specificity of the diagnosis. Groups "and" and "or" comprised essential and optional compounds, respectively, to reach a specific diagnosis. Group "NO" comprised metabolites that must be absent to make a definite diagnosis. We tested this system by analyzing patients with confirmed Propionic aciduria and others. Results: In all cases, the diagnostic metabolites were identified and correct diagnosis was founded to be made among the possible disease suggested by the system. Conclusion: The study showed that the developed method could be the method of choices in rapid, sensitive and simultaneous screening for organic aciduria and amino acidopathy with this simplified automated system.

  • PDF

Identification of Benzidine Metabolites in Rats by Gas Chromatography/Mass Selective Detector and its Toxicity in vitro (Gas-Chromatography/Mass Selective Detector를 사용하여 쥐의 뇨시료 중 benzidine 대사체의 확인 및 in vitro 독성)

  • 류재천;권오승
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.384-390
    • /
    • 2000
  • Metabolism study of the dye, benzidine, was performed by gas chromatography-mass selective detector (GC/MSD) in the urine of rats orally administered 100 mg/kg benzidine. Urine samples were collected in metabolic cages for 0-24, 24-48, and 48-72 hrs. Ten ml of the urine was extracted with XAD-2 resin and the XAD-2 column was eluted with methanol. After evaporation, benzidine and its metabolites were extracted with diethyl ether (for non-conjugated fraction). For conjugated metabolites, $\beta$-glucu-ronidase was added to the aqueous layer that was incubated for 1 hr at 5$0^{\circ}C$ and the aqueous layer was extracted as in non-conjugated fraction. Aliquot of trimethylsilylated derivatives was applied to the GC/MSD. The mutagenicity of benzidine and its acetylated metabolites was tested by histidine/reversion assay. Five metabolites observed and confirmed either by electron impact and chemical ionization modes of the GC/MSD, or authentic compounds were monoacetyl-, diacetyl-, hydroxyacetyl-, hydroxydiacetyl-, and hydroxy-benzidine. Monoacetyl-benzidine was more potent than benzidine in histidine/reversion assay. This data indicates that monoacetylation of benzidine may be one of the metabolites produced in metabolic activation process.

  • PDF

The Plant-Stress Metabolites, Hexanoic Aacid and Melatonin, Are Potential "Vaccines" for Plant Health Promotion

  • Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.415-427
    • /
    • 2021
  • A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as "vaccines" to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant's responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.

In Vitro Sex Steroid Metabolism in Red Spotted Grouper, Epinephelus akaara during Oocyte Maturation

  • Hwang, In Joon;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • We studied steroid metabolites produced from red-spotted grouper ovarian follicles during maturation. Oocytes with 350-500 ㎛ diameter were in vitro incubated in the presence of [3H] 17α-hydroxyprogesterone as a precursor. Steroid metabolites were extracted from incubated media and oocytes. The extracts were separated and identified using thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry. The identified metabolites were androstenedione (A4), testosterone (T) and estrone (E1). The metabolites of A4 was dominant in all size of oocytes and it was the highest in 480 ㎛ diameter oocytes. The metabolites of two progestins, 17α,20β-dihydroxy-4-pregnen-3-one and 17α,20α-dihydroxy-4-pregnen-3-one were detected in the oocytes less than 480 ㎛ diameter although they were not identified definitely. In the oocytes of 480 ㎛ diameter, metabolite of progestin was the highest, and germinal vesicle (GV) was still in the middle of cytoplasm. In the oocytes of 500 ㎛ diameter, GV was began to migrate and the major metabolites were A4 and E1. The metabolite of E1 was detected in all size of oocytes and it was higher than that of E2. These results suggest that oocytes of 480 ㎛ diameter are the transitional stage involving steroidogenic shift to final oocyte maturation and potential function of E1 during maturation process.

Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics

  • Robie, Vasquez;Ju Kyoung, Oh;Ji Hoon, Song;Dae-Kyung, Kang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.671-695
    • /
    • 2022
  • The gastrointestinal tract is a complex ecosystem that contains a large number of microorganisms with different metabolic capacities. Modulation of the gut microbiome can improve the growth and promote health in pigs. Crosstalk between the host, diet, and the gut microbiome can influence the health of the host, potentially through the production of several metabolites with various functions. Short-chain and branched-chain fatty acids, secondary bile acids, polyamines, indoles, and phenolic compounds are metabolites produced by the gut microbiome. The gut microbiome can also produce neurotransmitters (such as γ-aminobutyric acid, catecholamines, and serotonin), their precursors, and vitamins. Several studies in pigs have demonstrated the importance of the gut microbiome and its metabolites in improving growth performance and feed efficiency, alleviating stress, and providing protection from pathogens. The use of probiotics is one of the strategies employed to target the gut microbiome of pigs. Promising results have been published on the use of probiotics in optimizing pig production. This review focuses on the role of gut microbiome-derived metabolites in the performance of pigs and the effects of probiotics on altering the levels of these metabolites.

Metabolites of Latilactobacillus curvatus BYB3 and Indole Activate Aryl Hydrocarbon Receptor to Attenuate Lipopolysaccharide-Induced Intestinal Barrier Dysfunction

  • Wang, Xing;Yong, Cheng Chung;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.1046-1060
    • /
    • 2022
  • This study aimed to investigate the effects of the metabolites of Latilactobacillus curvatus BYB3 and indole-activated aryl hydrocarbon receptor (AhR) to increase the tight junction (TJ) proteins in an in vitro model of intestinal inflammation. In a Western blot assay, the metabolites of L. curvatus BYB3 reduced the TJ demage in lipoploysaccharide (LPS) stimulated-Caco-2 cells. This reduction was a result of upregulating the expression of TJ-associated proteins and suppressing the nuclear factor-κB signaling. Immunofluorescence images consistently revealed that LPS disrupted and reduced the expression of TJ proteins, while the metabolites of L. curvatus BYB3 and indole reversed these alterations. The protective effects of L. curvatus BYB3 were observed on the intestinal barrier function when measuring transepithelial electrical resistance. Using high-performance liquid chromatography analysis the metabolites, the indole-3-latic acid and indole-3-acetamide concentrations were found to be 1.73±0.27 mg/L and 0.51±0.39 mg/L, respectively. These findings indicate that the metabolites of L. curvatus BYB3 have increasing mRNA expressions of cytochrome P450 1A1 (CYP1A1) and AhR, and may thus be applicable for therapy of various inflammatory gut diseases as postbiotics.

Determination of pseudoephodrine, dextromethorphan and their metabolites in human urine by gas chromatography - mass spectrometry (GC/MS를 이용한 소변 중 Pseudoephedrine과 Dexrormethorphan 및 대사체의 동시분석)

  • Lee, Won Woong;Ahn, Sung-Ho;Lee, Sung-Woo;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.315-322
    • /
    • 2007
  • This study has been described the metabolism and excretion in a healthy male urine collected for 24 hr after oral administration of a complex (pseudoephedrine and dextromethorphan). To detect the trace amounts of parent drugs and their metabolites, acid-hydrolyzed urine was extracted and derivatized with MSTFA and MBTFA followed by gas chromatography/mass spectrometric analysis. Two parent drugs and their metabolites were tentatively identified as their derivatives based on the mass spectral interpretation and compared with previous reports. In addition, the time profile of urinary excretion rate for parent drugs and metabolites was studied. On the basis of metabolites identified and excretion rate, the metabolic pathways of both drugs are suggested.

Determination of diclofenac and its metabolites in human urine by GC-MS (GC-MS를 이용한 소변 중 Diclofenac 및 대사체 분석)

  • Jeong, Jee-Hye;Huh, Hun;Lee, Won Woong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.510-517
    • /
    • 2008
  • This study has been described the metabolism and excretion in a healthy male urine collected for 26hrs after oral administration of diclofenac. To detect conjugated metabolites of diclofenac, urine sample was acid-hydrolyzed under the conditions of 6M-HCl at over $110^{\circ}C$ for 1hr. During the acidic hydrolysis process, diclofenac and its metabolites were converted into their corresponding lactam-ring through dehydration reaction. As results of chemical conversion by means of hydrolysis, the structures of diclofenac and its metabolites were also changed acidic to basic forms. However, lactam-ring was degraded by hydroxyl ion at basic condition. Thus, the extraction rate of dehydrated diclofenac and its metabolites was not favored at basic condition. For the determination of trace amounts of diclofenac and its metabolites in urine, trimethylsilylation (TMS) with MSTFA was applied and followed by analysis with gas chromatograph-mass spectrometer. In this study, four metabolites that are formed by the hydroxylation of parent drug were mainly detected. Each metabolite was tentatively identified by both interpretation of mass spectra and comparison with previously reported results. In addition, time profile of urinary excretion rate for parent drugs and metabolites was studied. Finally, the metabolic pathway of diclofenac was suggested on the basis of the elucidation of its metabolites and excretion profiles.

Determination of Analytical Method for the Insecticide Clothianidin and its Metabolites in Soil and Surface Water (토양 및 토양수 중 살충제 Clothianidin 및 대사산물 잔류분석법 확립)

  • Choi, Young-Joon;Kwon, Chan-Hyeok;Han, Byung-Soo;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2014
  • BACKGROUND: The purpose of this study was to investigate the effects of clothianidin on the soil in terms of clothianidin dissipation and degradation to evaluate its safety in order to provide an analytical foundation for clothianidin and the 5 metabolites related to it. METHODS AND RESULTS: High-performance liquid chromatography(HPLC) was used to separate clothianidin and its metabolites in this study. In soil, after suppressing dissociation-proned ions with weak alkalic $NH_4OH$ and extracting the metabolites with methanol, clothianidin, Methylaminoimidazole(MAI), Methylnitroguanidine(MNG), Thiazolylmethylurea(TZMU) and Thiazolylnitroguanidine(TZNG). Thiazolylmethylguanidine(TMG) were extracted with the addition of neutral $NH_4OAC$ to increasing the intensity of ions. Compounding elements were separated by using Hydrometrix ($ChemElut^{TM}$) and ion-exchanging Solid-phase extraction(SPE) Strong cation-exchanger(SCX) and C18 were used. The recovery rates of clothianidin and 5 metabolites in soil and water ranged from 87.4% to 104.3%. A standard deviation of our analysis for the soil and water samples were less than 5%. CONCLUSION: Well accepted detection limits for clothianidin and 5 metabolites in soil samples based on a dissipation analysis is 0.005 mg/kg and 0.001 mg/L in water samples. The dissipation concentration of this study was decided to be enough to evaluate the dissipation levels of clothianidin and its metabolites.

A Study on the Simultaneous Determination of Residual Zeranol, Zearalenone and Their Metabolites in Beef by Gas Chromatography/Mass Spectrometry (Gas Chromatography/Mass Spectrometry에 의한 우육 중의 잔류 Zeranol, Zearalenone 및 그 대사산물들의 동시 분석법에 대한 연구)

  • 이은섭;이용욱
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • A Simultaneous determination method was improved for the determination and confirmation of zeranol, zearalenone, as well as their isomers and metabolites, in beef. The analytes were extracted from tissue by CH3CN, hydrolyzed enzymatically(for glucuronide conjugates), cleaned up by a strong basic anion exchange resin combined with a liquid/liquid partitioning, derivatized using MSTFA and confirmed, quantified by GC/MS/SIM with a internal standard, zearalane. The results were as follows : (1) all the estrogens were separated on the GC/MS chromatogram under the extraction method and the chromatographic conditions improved, the retention times of zearalane-TMS2, zearalanone-TMS2, zearalenone-TMS2, zeranol-TMS3, taleranol-TMS3, and $\alpha$-zearalenol-TMS3, $\beta$-zearalenol-TMS3, were 18.49, 19.44, 19.63, 19.71, 19.79 and 19.99, 20.08 minutes, respectively. (2) The calibration curves of residual zeranol, zearalenone and their metabolites showed constantly linear(r=0.99) in the range of 5~20 ng. The minimum detection concentration of residual zeranol, zearalenone and their metabolites was 1 ppb. (3) The total average recovery of residual zeranol, zearalenone and their metabolites from spiked beef was 60.2%(CV=29.7%) at the 1 ppb and 63.5%(CV=26.5) at the 2 ppb, 72.9%(CV=18.2%) at the 4 ppb. (4) The preservation method for 6 estrogens was improved for the fast running time(21 min) and MSTFA was utilized for derivatizing 6 estrogens for improvement of recovery, for good resolution, for characteristic mass spectra unlike Jose's method and Tina's method. The utilization of zearalane as internal standard showed good quantification result for zeranol, zearalenone, as well as their isomers and metabolites, in beef.

  • PDF