• Title/Summary/Keyword: Metabolism regulation

Search Result 599, Processing Time 0.027 seconds

The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila

  • Ryu, Tae Hoon;Subramanian, Manivannan;Yeom, Eunbyul;Yu, Kweon
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.640-648
    • /
    • 2022
  • CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.

Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks

  • Lei, Liu;Lixian, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1300-1308
    • /
    • 2012
  • The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of $AMPK{\alpha}2$, $AMPK{\beta}1$, $AMPK{\beta}2$, $AMPK{\gamma}1$, Ste20-related adaptor protein ${\beta}$ ($STRAD{\beta}$), mouse protein $25{\alpha}$ ($MO25{\alpha}$) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of $AMPK{\alpha}1$, $AMPK{\gamma}2$, LKB1 and neuropeptide Y (NPY). However, the expression of $MO25{\beta}$, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick's hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.

Production of Leptin in E. coli and Its Effect on Glucose and Acetate Transport and Expression of Uncoupling Protein-2 Gene in Adipose Tissues of Korean Cattle (Hanwoo)

  • Kim, K.S.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1062-1068
    • /
    • 2004
  • Leptin has a major role in the regulation of food intake and energy homeostasis. In addition, leptin participates in many physiological functions including regulation of lipid metabolism. Bovine recombinant leptin protein was produced in E. coli cells in order to understand function of leptin in the regulation of lipid metabolism. The leptin expression vector was constructed in pGEX-4T-3 vector and transformed into E. coli BL21 cells. Expression of the GST-leptin fusion protein was induced with IPTG. The fusion protein was purified using glutathione sepharose 4B batch method, and the recombinant leptin was eluted after thrombin protease digestion. The effect of leptin on glucose transport was examined in the differentiated adipocytes of 3T3-L1 cells. Leptin had no effect on basal and insulin-stimulated glucose transport in 3T3-L1 cells (p>0.05). Effect of recombinant leptin on glucose and acetate transport was examined in adipose tissues of Korean cattle (Hanwoo). Insulin stimulated glucose transport in both intramuscular and subcutaneous adipose tissues (p<0.05), but leptin did not affect glucose transport in both adipose tissues (p>0.05). Insulin stimulated acetate transport in bovine adipose tissues (p<0.05), but leptin did not affect acetate transport (p>0.05). Northern and RT-PCR analyses showed that mRNA levels of uncoupling protein-2 were increased by leptin treatment in 3T3-L1 cells without statistical difference (p>0.05). In conclusion, bovine recombinant leptin did not affect glucose and acetate transport in both 3T3-L1 adipocytes and bovine adipose tissues, while it stimulates UCP-2 mRNA expression in 3T3-L1 cells.

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF

Glycolysis Mediated Sarcoplasmic Reticulum Ca2+ Signal Regulates Mitochondria Ca2+ during Skeletal Muscle Contraction (근수축시 해당작용에 의한 근형질 세망의 Ca2+ 변화가 미토콘드리아 Ca2+ 증가에 미치는 영향)

  • Park, Dae-Ryoung
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2017
  • PURPOSE: This study was to investigate the Glycolysis mediated sarcoplasmic reticulum (SR) $Ca^{2+}$ signal regulates mitochondria $Ca^{2+}$ during skeletal muscle contraction by using glycolysis inhibitor. METHODS: To examine the effect of Glycolysis inhibitor on SR and mitochondria $Ca^{2+}$ content, we used skeletal muscle fiber from gastrocnemius muscle. 2-deoxy glucose and 3-bromo pyruvate used as glycolysis inhibitor, it applied to electrically stimulated muscle contraction experiment. Intracellular $Ca^{2+}$ content, SR, mitochondria $Ca^{2+}$ level and mitochondria membrane potential (MMP) was detected by confocal microscope. Mitochondrial energy metabolism related enzyme, citric acid synthase activity also examined for mitochondrial function during the muscle contraction. RESULTS: Treatment of 2-DG and 3BP decreased the muscle contraction induced SR $Ca^{2+}$ increase however the mitochondria $Ca^{2+}$ level was increased by treatment of inhibitors and showed and overloading as compared with the control group. Glycolysis inhibitor and thapsigargin treatment showed a significant decrease in MPP of skeletal muscle cells compared to the control group. CS activity significantly decreased after pretreatment of glycolysis inhibitor during skeletal muscle contraction. These results suggest that regulation of mitochondrial $Ca^{2+}$ levels by glycolysis is an important factor in mitochondrial energy production during skeletal muscle contraction CONCLUSIONS: These results suggest that mitochondria $Ca^{2+}$ level can be regulated by SR $Ca^{2+}$ level and glycolytic regulation of intraocular $Ca^{2+}$ signal play pivotal role in regulation of mitochondria energy metabolism during the muscle contraction.

LPS-Induced Modifications in Macrophage Transcript and Secretion Profiles Are Linked to Muscle Wasting and Glucose Intolerance

  • Heeyeon Ryu;Hyeon Hak Jeong;Seungjun Lee;Min-Kyeong Lee;Myeong-Jin Kim;Bonggi Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.270-279
    • /
    • 2024
  • Macrophages are versatile immune cells that play crucial roles in tissue repair, immune defense, and the regulation of immune responses. In the context of skeletal muscle, they are vital for maintaining muscle homeostasis but macrophage-induced chronic inflammation can lead to muscle dysfunction, resulting in skeletal muscle atrophy characterized by reduced muscle mass and impaired insulin regulation and glucose uptake. Although the involvement of macrophage-secreted factors in inflammation-induced muscle atrophy is well-established, the precise intracellular signaling pathways and secretion factors affecting skeletal muscle homeostasis require further investigation. This study aimed to explore the regulation of macrophage-secreted factors and their impact on muscle atrophy and glucose metabolism. By employing RNA sequencing (RNA-seq) and proteome array, we uncovered that factors secreted by lipopolysaccharide (LPS)-stimulated macrophages upregulated markers of muscle atrophy and pro-inflammatory cytokines, while concurrently reducing glucose uptake in muscle cells. The RNA-seq analysis identified alterations in gene expression patterns associated with immune system pathways and nutrient metabolism. The utilization of gene ontology (GO) analysis and proteome array with macrophage-conditioned media revealed the involvement of macrophage-secreted cytokines and chemokines associated with muscle atrophy. These findings offer valuable insights into the regulatory mechanisms of macrophage-secreted factors and their contributions to muscle-related diseases.

Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

  • Jung, Sung-Hyun;Kim, Hyung-Jin;Oh, Gi-Su;Shen, AiHua;Lee, Subin;Choe, Seong-Kyu;Park, Raekil;So, Hong-Seob
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1(HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation.

Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway

  • Park, Tae-Jun;Park, Anna;Kim, Jaehoon;Kim, Jeong-Yoon;Han, Baek Soo;Oh, Kyoung-Jin;Lee, Eun Woo;Lee, Sang Chul;Bae, Kwang-Hee;Kim, Won Kon
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.124-129
    • /
    • 2021
  • In current times, obesity is a major health problem closely associated with metabolic disease such as diabetes, dyslipidemia, and cardiovascular disease. The direct cause of obesity is known as an abnormal increase in fat cell size and the adipocyte pool. Hyperplasia, the increase in number of adipocytes, results from adipogenesis in which preadipocytes differentiate into mature adipocytes. Adipogenesis is regulated by local and systemic cues that alter transduction pathways and subsequent control of adipogenic transcription factors. Therefore, the regulation of adipogenesis is an important target for preventing obesity. Myonectin, a member of the CTRP family, is a type of myokine released by skeletal muscle cells. Although several studies have shown that myonectin is associated with lipid metabolism, the role of myonectin during adipogenesis is not known. Here, we demonstrate the role of myonectin during adipocyte differentiation of 3T3-L1 cells. We found that myonectin inhibits the adipogenesis of 3T3-L1 preadipocytes with a reduction in the expression of adipogenic transcription factors such as C/EBPα, β and PPARγ. Furthermore, we show that myonectin has an inhibitory effect on adipogenesis through the regulation of the p38 MAPK pathway and CHOP. These findings suggest that myonectin may be a novel therapeutic target for the prevention of obesity.

The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via nuclear factor kappa B1 and lipid metabolism regulation

  • Hwang, Eunmi;Kim, Gye Won;Song, Ki Duk;Lee, Hak-Kyo;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1776-1788
    • /
    • 2019
  • Objective: The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods: ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells ($M{\Phi}$) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B ($NF-{\kappa}B$) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 $M{\Phi}$ cells was evaluated by the colony forming unit assay. Results: ASF upregulated the cell viability and growth rate of 3D4/31 $M{\Phi}$, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of $NF-{\kappa}B$ protein, tumor necrosis factor $(TNF){\alpha}$ mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of $NF-{\kappa}B$, $TNF{\alpha}$, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 $M{\Phi}$ against Escherichia coli. Conclusion: This study provides a novel insight into the regulation of $NF-{\kappa}B$ activity and lipid metabolism in $M{\Phi}$, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.

Involvement of Mrs3/4 in Mitochondrial Iron Transport and Metabolism in Cryptococcus neoformans

  • Choi, Yoojeong;Do, Eunsoo;Hu, Guanggan;Caza, Melissa;Horianopoulos, Linda C.;Kronstad, James W.;Jung, Won Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1142-1148
    • /
    • 2020
  • Mitochondria play a vital role in iron uptake and metabolism in pathogenic fungi, and also influence virulence and drug tolerance. However, the regulation of iron transport within the mitochondria of Cryptococcus neoformans, a causative agent of fungal meningoencephalitis in immunocompromised individuals, remains largely uncharacterized. In this study, we identified and functionally characterized Mrs3/4, a homolog of the Saccharomyces cerevisiae mitochondrial iron transporter, in C. neoformans var. grubii. A strain expressing an Mrs3/4-GFP fusion protein was generated, and the mitochondrial localization of the fusion protein was confirmed. Moreover, a mutant lacking the MRS3/4 gene was constructed; this mutant displayed significantly reduced mitochondrial iron and cellular heme accumulation. In addition, impaired mitochondrial iron-sulfur cluster metabolism and altered expression of genes required for iron uptake at the plasma membrane were observed in the mrs3/4 mutant, suggesting that Mrs3/4 is involved in iron import and metabolism in the mitochondria of C. neoformans. Using a murine model of cryptococcosis, we demonstrated that an mrs3/4 mutant is defective in survival and virulence. Taken together, our study suggests that Mrs3/4 is responsible for iron import in mitochondria and reveals a link between mitochondrial iron metabolism and the virulence of C. neoformans.