• Title/Summary/Keyword: Metabolism regulation

Search Result 599, Processing Time 0.031 seconds

Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

  • Ju-Ri Woo;Doo-Ho Choi;Muhammed Taofiq Hamza;Kyung-Oh Doh;Chang-Yoon Lee;Yeon-Sik Choo;Sangman Lee;Jong-Guk Kim;Heeyoun Bunch;Young-Bae Seu
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.366-373
    • /
    • 2022
  • Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.

Effects of Ephedra Herba Hexane Fraction on Lipid Metabolism in Hyperlipidemic Mice (마황(麻黃) Hexane 분획물이 생쥐의 지질 대사에 미치는 영향)

  • Kim, Kyoung Min;Kim, Young Kyun;Shin, Gil cho
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • ■ Objectives This study was designed to investigate the effects of Ephedra Herba hexane fraction on lipid levels in serum and lipid accumulation in liver tissue in Hyperlipidemic mice. ■ Methods Hyperlipidemia was induced by providing high fat diet for 4 weeks. Normal group was provided with normal diet. CTL groupwas provided with high fat diet. Ephedra Herba hexane fraction group was provieded with high fat diet and administered orally in the concentration of 1.5mg/kg body weight/day for 2 weeks. In this experiment, effects on total cholesterol, HDL-cholesterol, triglyceride, AST, ALT, fasting blood glucose in serum were measured. In addition histopathological changes in liver tissue were also observed. ■ Results Ephedra Herba hexane fraction did not affects weight gain, serum AST and ALT in hyperlipidemic mice. Oral administration of Ephedra Herba hexane fraction lowered levels of total cholesterol and triglyceride, which were elevated by induction of hyperlipidemia. In addition, Ephedra Herba hexane fraction group showed downward tendency of lipid accumulation compared with CTL group. Finally, administration of Ephedra Herba hexane fraction lowered fasting blood glucose significantly. And Ephedra Herba hexane fraction also ameliorates anti-oxidative stress systems in internal organs which play key role in disease prevention. ■ Conclusion These results suggest that Ephedra Herba hexane fraction can prevent lipid accumulation in liver tissue through regulation of dyslipidemia and hyperglycaemia.

  • PDF

Epigenetic regulation of key gene of PCK1 by enhancer and super-enhancer in the pathogenesis of fatty liver hemorrhagic syndrome

  • Yi Wang;Shuwen Chen;Min Xue;Jinhu Ma;Xinrui Yi;Xinyu Li;Xuejin Lu;Meizi Zhu;Jin Peng;Yunshu Tang;Yaling Zhu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1317-1332
    • /
    • 2024
  • Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Methods: Herein, we constructed the high-fat diet-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer and super enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange) ≥1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥0.5 and log2(FoldChange)≤-1) (PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies have identified potential therapeutic biomarkers of PCK1 and elucidated novel insights into the pathogenesis of FLHS, especially for the epigenetic perspective.

Role of Ghrelin in the Control of Reproductive Endocrine Function (포유류 생식 내분비 기능 조절에서 Ghrelin의 역할)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.207-215
    • /
    • 2009
  • Numerous factors can affect the activities of hypothalamus-pituitary-gonad (HPG) hormonal axis, resulting in alteration of reproductive capacity or status such as onset of puberty and menopause. Soon after the finding of leptin, a multifunctional hormone secreted from adipocytes, a close relationship between reproduction and body energy balance have been manifested. Ghrelin, another multifunctional hormone from gastrointestinal tract, is an endogenous ligand of growth hormone secretagogue receptor (GHSR), and is thought to be a counterpart of leptin in the regulation of energy homeostasis. As expected, ghrelin can also modulate the reproductive capacity through the modulation of activities of HPG axis. This paper summarizes the current knowledge on the discovery, gene structures, tissue distribution and roles of ghrelin and GHSRs in mammalian reproduction in particular modulation of reproductive hormone secretion in HPG axis. Like POMC gene expression in pituitary gland, preproghrelin gene can generate a complex repertoire of transcripts which further undergo alternative splicing and posttranslational modifications. Concerning the roles of preproghrelin gene products in the control of body physiology except energy homeostasis, limited knowledge is available so far. Several lines of evidence, however, show the interplay of ghrelin between metabolism and reproduction. In rat and human, the distribution of ghrelin receptor GHSRs (GHSR1a and GHSR1b) has been confirmed not only in the hypothalamus and pituitary which were originally postulated as target of ghrelin but also in the testis and ovary. Expression of the preproghrelin gene in the brain and gonads was also verified, suggesting the local role (s) of ghrelin in HPG axis. Ghrelin might play a negative modulator in the secretions of hypothalamic GnRH, pituitary gonadotropins and gonadal steroids though the action on pituitary is still questionable. Recent studies suggest the involvement of ghrelin in regulation of puberty onset and possibly of menopause entry. It is now evident that ghrelin is a crucial hormomal component in 'brain-gut' axis, and is a strong candidate links between metabolism and reproduction. Opposite to that for leptin, ghrelin signaling is likely representing the 'hunger' state of body energy balance and is necessary to avoid the energy investment into reproduction which has not a top priority in maintaining homeostasis. Further researches are needed to gain a deep insight into the more precise action mechanism and role of ghrelin in reproduction, and to guarantee the successful biomedical applications.

  • PDF

Expression of Bombyx mori Transferrin Gene in Response to Oxidative Stress or Microbes (미생물 및 산화적 스트레스에 의한 누에 트랜스페린 발현)

  • Yun, Eun-Young;Kwon, O-Yu;Hwang, Jae-Sam;Ahn, Mi-Young;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1607-1611
    • /
    • 2011
  • To analyze the role of Bombyx mori transferrin (BmTf) in response to microbes or oxidative stress, we investigated the level of BmTf transcripts in B. mori treated with various microbes and oxidative stress inducers. BmTf mRNA was mainly expressed in the epidermis and fat in the bodies of B. mori injected with Escherichia coli, and up regulated in response to microbes such as bacteria, fungi, or viruses, but was hardly altered in response to oxidative stress inducers such as $H_2O_2$, Cu, or $FeCl_3$. We also confirmed that BmTf mRNA expression was increased in Bm5 cells treated with ERK, PLC, PKA, PI3K, MAPK, or JNK inhibitors, respectively. To identify the major inducer of BmTf expression, we analyzed the amount of serum iron in the hemolymph of B. mori after injection or feeding with E. coli or $FeCl_3$. The results showed that the amount of serum iron was not changed by injection and feeding with E. coli, although BmTf mRNA was increased by injection with E. coli. On the contrary, injection and feeding with $FeCl_3$ significantly increased the amount of serum iron, although they did not alter the BmTf mRNA level. On the basis of these results, we assume that up-regulation of BmTf in B. mori is closely related to the defense of microorganism, and BmTf may be expressed at the basal constitutive level when it plays a role in iron metabolism by maintaining iron homeostasis and in the insect defense mechanism against oxidative stress.

Effects of High Stocking Density on the Expressions of Stress and Lipid Metabolism Associated Genes in the Liver of Chicken (닭의 고밀도 사양체계가 스트레스 및 지방대사 연관 유전자 발현에 미치는 영향)

  • An, Young Sook;Park, Jeong Geun;Jang, In Surk;Sohn, Sea Hwan;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1672-1679
    • /
    • 2012
  • The effect of high stocking density (HSD) on the expression of stress and lipid metabolism associated genes in the liver of broiler chickens was examined by chicken genome array analysis. The chickens in a control group were randomly assigned to a $495cm^2/bird$ stocking density, whereas the chickens in a HSD group were arranged in a $245cm^2/bird$ stocking density with feeding ad libitum for 35 days. The chickens assigned to the HSD group had a significantly lower body weight, weight gain, and feed intake compared with those of the control group (p<0.05). The mortality of chickens was higher in the HSD group than in the control group. The microarray analysis indicated up-regulation of stress associated genes such as HMGCR, $HSP90{\alpha}$, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, and down-regulation of interferon-${\gamma}$ and PDCD4 genes. The endoplasmic reticulum stress associated genes, HSPA5 (GRP78/Bip), DNAJC3 and ATF4, were highly expressed in the HSD group. The genes, ACSL5, TMEM195 and ELOVL6, involved in fatty acid synthesis, were elevated in the HSD group. The genes, ACAA1, ACOX1, EHHADH, LOC423347 and CPT1A, related to fatty acid oxidation, were also activated in the HSD group. These results suggest that a HSD rearing system stimulates the genes associated with fatty acid synthesis as well as fatty acid oxidation in the liver of broiler chickens.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

Effect of Ginseng Saponins on the Biosynthesis of Prostaglandins (인삼 사포닌 성분이 프로스타글란딘류 생성에 미치는 영향)

  • 이선희;박찬웅
    • Journal of Ginseng Research
    • /
    • v.13 no.2
    • /
    • pp.202-210
    • /
    • 1989
  • The effects of Ginseng saponins on the in vitro biosynthesis of prostaglandins were examined in order to identify the role of some Ginseng components on the regulation of arachidonic arid metabolism. The productions of prostaglandin $E_2$ (PG$E_2$), $F_2$ (PGF2), thromboxane $B_2$(TX$B_2$) and 6-ketoprostaglandin Fl (6-Keto-PGF1) from [3Hl-arachidonic acid were evaluatpf by radiochromatographic analysis with rabbit kidney microtome, human platelet homogenate and bovine aortic microsome. The amounts of the total prostaglandins produced by cyclooxygenase activity and malondialdehyde from arachidonic acid didn't show significant changes in the presence of Ginseng saponins. Both of panaxadiol and panaxatriol didn't affect the production of PG$E_2$ while the formations of PG$F_2$( and TX$B_2$( were nearkedly reduced and the production of prostacyclin was increased. The formation of TXBE was reduced by ginsenoside $Rb_2$, Rc, and Re, however the production of 6-Keto-PGF1 was increased dose dependently up to 1 mg/ml. Moreover, platelet aggregations induced by arachidonic acid and U46619 (9.11-methanepoxy PG$H_2$), TX$A_2$ mimetics, were also inhibited by three ginsenosides. The effect of G-Re on prostacyclin synthetase was inhibited by tranylcypromine, prostacyclin synthetase inhibitor. These results suggest that Ginseng saponins may not directly act on cyclooxygenase but affect on the divergent pathway from endoperoxide.

  • PDF

Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity

  • Singh, Raksha;Dangol, Sarmina;Chen, Yafei;Choi, Jihyun;Cho, Yoon-Seong;Lee, Jea-Eun;Choi, Mi-Ok;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.426-438
    • /
    • 2016
  • Plant disease resistance occurs as a hypersensitive response (HR) at the site of attempted pathogen invasion. This specific event is initiated in response to recognition of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). Both PTI and ETI mechanisms are tightly connected with reactive oxygen species (ROS) production and disease resistance that involves distinct biphasic ROS production as one of its pivotal plant immune responses. This unique oxidative burst is strongly dependent on the resistant cultivars because a monophasic ROS burst is a hallmark of the susceptible cultivars. However, the cause of the differential ROS burst remains unknown. In the study here, we revealed the plausible underlying mechanism of the differential ROS burst through functional understanding of the Magnaporthe oryzae (M. oryzae) AVR effector, AVR-Pii. We performed yeast two-hybrid (Y2H) screening using AVR-Pii as bait and isolated rice NADP-malic enzyme2 (Os-NADP-ME2) as the rice target protein. To our surprise, deletion of the rice Os-NADP-ME2 gene in a resistant rice cultivar disrupted innate immunity against the rice blast fungus. Malic enzyme activity and inhibition studies demonstrated that AVR-Pii proteins specifically inhibit in vitro NADP-ME activity. Overall, we demonstrate that rice blast fungus, M. oryzae attenuates the host ROS burst via AVR-Pii-mediated inhibition of Os-NADP-ME2, which is indispensable in ROS metabolism for the innate immunity of rice. This characterization of the regulation of the host oxidative burst will help to elucidate how the products of AVR genes function associated with virulence of the pathogen.

The Effect of Aralia Cordata Thunb and Cimicifuga Heracleifolia on Cartilage Protection by the Regulation of Metabolism in Human Osteoarthric Chondrocytes (퇴행성 관절염에 대한 독활.승마 복합처방의 대사조절을 통한 연골보호 효과)

  • Shin, Ye-Ji;Beak, Yong-Hyeon;Park, Dong-Suk;Kim, Jae-Kyu;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.27 no.4
    • /
    • pp.39-53
    • /
    • 2010
  • 목적 : 퇴행성 관절염은 염증성 사이토카인인 IL-$1\beta$에 의해 연골관절이 파괴되고 이로 인해 염증성 사이토카인이 더욱 증가하는 질환이다. 퇴행성 관절염을 치료하기 위해서는 연골 파괴를 가속화시키는 catabolic cytokines의 활성을 줄이고, 성장인자인 anabolic factor의 활성을 증가시는 연골 보호 작용이 있어야 한다. 본 연구에서는 독활 승마 처방(OAH19T)이 catabolic/anabolic 대사 조절에 어떤 영향을 미치는지와 그 신호 전달 기전에 대해 연구하였다. 또한 OAH19T를 구성하는 단미재 및 임상에서 사용되는 COX-2 inhibitor인 Celebrex(CEL)와 효능을 비교 실험하였다. 방법 : 배양된 세포에 IL-$1\beta$로 자극한 후 (1) glycosaminoglycan(GAG)의 분해 억제 정도, (2) OAH19T와 CEL에 대하여 MMP-1과 MMP-3의 유전자 발현 및 활성 억제, (3) Aggrecan 및 Aggrecanases의 유전자 발현 및 활성 억제, (4) OAH19T의 growth factor의 조절 능력, (5) MAPK pathway 등을 RT-PCR(reverse transcriptase-polymerase chain reaction), ELISA(Enzyme-linked immunosorbent assay), western blot, viability 측정을 통해 검증했다. 결과 : 사람 관절 세포에서 (1) 독활 승마 각각의 단미재, 임상에서 사용중인 셀레콕시브(CEL), 조인스보다 실험 약물(OAH19T)이 저농도에서 GAG 분해 억제 효과가 우수하였고, 부탄올로 분획한 OAH19B와는 동등한 효과를 보였다. (2) OAH19T는 IL-$1\beta$에 의하여 활성화된 MMP-1과 MMP-3의 발현을 모두 억제하였으나, CEL은 MMP-1의 발현은 억제하였으나 MMP-3의 발현은 억제하지 못하였다. (3) OAH19T는 IL-$1\beta$에 의하여 손상된 Aggrecan을 회복시켰으며 이는 활성화된 Aggrecanase-1과 Aggrecanase-2를 억제시킴으로써 나타난 결과이다. 그러나 CEL의 경우, 손상된 Aggrecan을 회복시키지 못하였다. (4) 배양된 세포는 IL-$1\beta$에 의하여 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현이 억제되었으나, OAH19T는 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현을 회복시켜 OAH19T가 anabolic한 조절능력이 있음을 시사한다. 그러나 CEL의 경우 growth factor에 대한 조절 능력이 없었다. (5) 대사 조절 작용에 대한 기전으로서 MAPK pathway에 대해서 연구한 결과 IL-$1\beta$에 의하여 유도된 pERK, pp38 kinase의 활성은 억제하였고, pJNK의 활성은 변하지 않았다. 또한 OAH19T는 연골 세포에 독성이 없었으며 IL-$1\beta$에 의해 유도된 세포 증식만을 억제시켰다. 이 결과로, OAH19T가 OA chondrocyte의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다. 결론 : OAH19T는 이를 구성하는 단미재 및 CEL보다 연골보호 효과가 월등하였고, 이러한 연골보호 효과는 catabolic cytokines/growth factors의 균형으로 대사조절을 통해 연골세포의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다.