The Effect of Aralia Cordata Thunb and Cimicifuga Heracleifolia on Cartilage Protection by the Regulation of Metabolism in Human Osteoarthric Chondrocytes

퇴행성 관절염에 대한 독활.승마 복합처방의 대사조절을 통한 연골보호 효과

  • Shin, Ye-Ji (Dep. of Acupuncture & Moxibustion, College of Oriental Medicine, Kyung Hee University) ;
  • Beak, Yong-Hyeon (Dep. of Acupuncture & Moxibustion, College of Oriental Medicine, Kyung Hee University) ;
  • Park, Dong-Suk (Dep. of Acupuncture & Moxibustion, College of Oriental Medicine, Kyung Hee University) ;
  • Kim, Jae-Kyu (Div. of Clinical Medicine, School of Korean Medicine, Pusan National University) ;
  • Koh, Hyung-Kyun (Dep. of Acupuncture & Moxibustion, College of Oriental Medicine, Kyung Hee University)
  • 신예지 (경희대학교 한의과대학 침구학교실) ;
  • 백용현 (경희대학교 한의과대학 침구학교실) ;
  • 박동석 (경희대학교 한의과대학 침구학교실) ;
  • 김재규 (부산대학교 한의학전문대학원 임상의학부) ;
  • 고형균 (경희대학교 한의과대학 침구학교실)
  • Received : 2010.06.23
  • Accepted : 2010.08.04
  • Published : 2010.08.20

Abstract

목적 : 퇴행성 관절염은 염증성 사이토카인인 IL-$1\beta$에 의해 연골관절이 파괴되고 이로 인해 염증성 사이토카인이 더욱 증가하는 질환이다. 퇴행성 관절염을 치료하기 위해서는 연골 파괴를 가속화시키는 catabolic cytokines의 활성을 줄이고, 성장인자인 anabolic factor의 활성을 증가시는 연골 보호 작용이 있어야 한다. 본 연구에서는 독활 승마 처방(OAH19T)이 catabolic/anabolic 대사 조절에 어떤 영향을 미치는지와 그 신호 전달 기전에 대해 연구하였다. 또한 OAH19T를 구성하는 단미재 및 임상에서 사용되는 COX-2 inhibitor인 Celebrex(CEL)와 효능을 비교 실험하였다. 방법 : 배양된 세포에 IL-$1\beta$로 자극한 후 (1) glycosaminoglycan(GAG)의 분해 억제 정도, (2) OAH19T와 CEL에 대하여 MMP-1과 MMP-3의 유전자 발현 및 활성 억제, (3) Aggrecan 및 Aggrecanases의 유전자 발현 및 활성 억제, (4) OAH19T의 growth factor의 조절 능력, (5) MAPK pathway 등을 RT-PCR(reverse transcriptase-polymerase chain reaction), ELISA(Enzyme-linked immunosorbent assay), western blot, viability 측정을 통해 검증했다. 결과 : 사람 관절 세포에서 (1) 독활 승마 각각의 단미재, 임상에서 사용중인 셀레콕시브(CEL), 조인스보다 실험 약물(OAH19T)이 저농도에서 GAG 분해 억제 효과가 우수하였고, 부탄올로 분획한 OAH19B와는 동등한 효과를 보였다. (2) OAH19T는 IL-$1\beta$에 의하여 활성화된 MMP-1과 MMP-3의 발현을 모두 억제하였으나, CEL은 MMP-1의 발현은 억제하였으나 MMP-3의 발현은 억제하지 못하였다. (3) OAH19T는 IL-$1\beta$에 의하여 손상된 Aggrecan을 회복시켰으며 이는 활성화된 Aggrecanase-1과 Aggrecanase-2를 억제시킴으로써 나타난 결과이다. 그러나 CEL의 경우, 손상된 Aggrecan을 회복시키지 못하였다. (4) 배양된 세포는 IL-$1\beta$에 의하여 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현이 억제되었으나, OAH19T는 TGF-$\beta$II및 TGF-$\beta$ receptor II의 발현을 회복시켜 OAH19T가 anabolic한 조절능력이 있음을 시사한다. 그러나 CEL의 경우 growth factor에 대한 조절 능력이 없었다. (5) 대사 조절 작용에 대한 기전으로서 MAPK pathway에 대해서 연구한 결과 IL-$1\beta$에 의하여 유도된 pERK, pp38 kinase의 활성은 억제하였고, pJNK의 활성은 변하지 않았다. 또한 OAH19T는 연골 세포에 독성이 없었으며 IL-$1\beta$에 의해 유도된 세포 증식만을 억제시켰다. 이 결과로, OAH19T가 OA chondrocyte의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다. 결론 : OAH19T는 이를 구성하는 단미재 및 CEL보다 연골보호 효과가 월등하였고, 이러한 연골보호 효과는 catabolic cytokines/growth factors의 균형으로 대사조절을 통해 연골세포의 탈분화 및 세포 고사를 억제하여 연골보호 및 회복 효과가 있음을 알 수 있었다.

Keywords

References

  1. Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999 ; 4 : D662– 70. https://doi.org/10.2741/Poole
  2. Aigner T and Dudhia J. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis : a hypothesis. Ann Rheum Dis. 1997 ; 56 : 287–91. https://doi.org/10.1136/ard.56.5.287
  3. Dinarello CA and Moldawer LL. Proinflammatory and Anti inflammatory Cytokines in Rheumatoid Arthritis. Thousand Oaks, CA : A Primer for Clinicians Amgen Inc 1999.
  4. Lark MW, Bayne EK, Flanagan J, Harper CF, Hoerrner LA, Hutchinson NI et al. Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J Clin Invest. 1997 ; 100 : 93–106. https://doi.org/10.1172/JCI119526
  5. Westling J, Fosang AJ, Last K, Thompson VP, Tomkinson KN, Hebert T et al. ADAMTS4 cleaves at the aggrecanase site(Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J Biol Chem. 2002 ; 277 : 16059-66. https://doi.org/10.1074/jbc.M108607200
  6. Pujol JP. TGF-$\beta$ and osteoarthritis : In vivo veritas? Osteoarthritis and cartilage. 1997 ; 7 : 439-40.
  7. Wrana JL, Attisano L, Wieser R, Ventura F and $Massagu\acute{e}$ J. Mechanism of activation of the TGF-$\beta$ receptor. Nature. 1994 ; 370 : 341. https://doi.org/10.1038/370341a0
  8. Sano Y, Harada J, Tashiro S, Gotoh-Mandeville R, Maekawa T and Ishii S. ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem. 1999 ; 274 : 8949-57. https://doi.org/10.1074/jbc.274.13.8949
  9. Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Moriguchi T, Gotoh Y, Matsumoto K and Nishida E. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c- Jun N-terminal kinase. J Biol Chem. 1997 ; 272 : 8141-4.
  10. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, and Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGFbeta signal transduction. Science 1995 ; 270 : 2008-11. https://doi.org/10.1126/science.270.5244.2008
  11. Chang L and Karin M. Mammalian MAP kinase signalling cascades. Nature 2001 ; 410 : 37-40. https://doi.org/10.1038/35065000
  12. Robinson MJ, Cobb MH. Mitogenactivated protein kinase pathways. Curr Opin Cel Biol. 1997 ; 9 : 180-6. https://doi.org/10.1016/S0955-0674(97)80061-0
  13. Chowdhury TT, Salter DM, Bader DL, Lee DA. Signal transduction pathways involving p38 MAPK, JNK, NFkappaB and AP-1 influe- nces the response of chondrocytes cultured in agarose constructs to IL-1${\beta}eta$ and dynamic compression. Inflamm Res. 2008 ; 57 : 306-13. https://doi.org/10.1007/s00011-007-7126-y
  14. Dang NH, Zhang X, Zheng M, Son KH, Chang HW, Kim HP et al. Inhibitory constituents against cyclooxygenases from Aralia cordata Thunb. Arch Pharm Res. 2005 ; 28 : 28-33. https://doi.org/10.1007/BF02975131
  15. Baek YH, Huh JE, Lee JD, Choi DY, Park DS. Effect of Aralia cordata extracts on cartilage protection and apoptosis inhibition. Bioll Pharm Bull. 2006 ; 29 : 1423-30. https://doi.org/10.1248/bpb.29.1423
  16. Park DS, Huh JE, Baek YH. Therapeutic effect of Aralia cordata extracts on cartilage protection in collagenase-induced inflammatory arthritis rabbit model. J Ethnopharmacol. 2009 ; 125 : 207-17. https://doi.org/10.1016/j.jep.2009.07.010
  17. Ahmed S, Wang N, Lalonde M, Goldberg VM, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate(EGCG) differentially inhibits interleukin-1$\beta$-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther. 2004 ; 308 : 767-73.
  18. Rasheed Z, Anbazhagan AN, Akhtar N, Ramamurthy S, Voss FR, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate inhibits advanced glycation end product-induced expression of tumor necrosis factor-alpha and matrix metalloproteinase- 13 in human chondrocytes. Arthritis Res Ther. 2009 ; 11 : R71. https://doi.org/10.1186/ar2700
  19. Westling J, Fosang AJ, Last K, Thompson VP, Tomkinson KN, Hebert T et al. ADAMTS4 cleaves at the aggrecanase site(Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain. J Biol Chem. 2002 ; 277 : 16059-66. https://doi.org/10.1074/jbc.M108607200
  20. Tortorella MD, Malfait AM, Deccico C, Arner E. The role of ADAM-TS4(aggrecanase-1) and ADAM-TS5(aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage. 2001 ; 9 : 539-52. https://doi.org/10.1053/joca.2001.0427
  21. Glasson SS, Askew R, Sheppard B, Carito BA, Blanchet T, Ma HL et al. Characterization of and osteoarthritis susceptibility in ADAMTS- 4-knockout mice. Arthritis Rheum. 2004 ; 50 : 2547-58. https://doi.org/10.1002/art.20558
  22. Powell AJ, Little CB, Hughes CE. Low molecular weight isoforms of the aggrecanases are responsible for the cytokine-induced proteolysis of aggrecan in a porcine chondrocyte culture system. Arthritis Rheum. 2007 ; 56 : 3010-19. https://doi.org/10.1002/art.22818
  23. Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF. Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J ClinI nvest. 1989 ; 84 : 678-85. https://doi.org/10.1172/JCI114215
  24. Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases : role in arthritis. Front Biosci. 2006 ; 11 : 529-43. https://doi.org/10.2741/1817
  25. Lin PM, Christoper Chen CT, Torzilli PA. Increased stromyelin-1(MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen demage in cyclically load injuried articular cartilage. Osteoarthritis and Cartilage. 2004 ; 12 : 485-96 https://doi.org/10.1016/j.joca.2004.02.012
  26. Dumond H, Presle N, Pottie P, Pacquelet S, Terlain B, Netter P et al. Site specific change in gene expression and cartilage metabolism during early experimental osteoarthritis. Osteoarthritis Cartilage. 2004 ; 12 : 284-95. https://doi.org/10.1016/j.joca.2003.11.008
  27. Kim JH, Ryu KH, Jung KW, Han CK, Kwak WJ, Cho YB. SKI306X suppresses cartilage destruction and inhibits the production of matrix metalloproteinase in rabbit joint cartilage explants culture. J Pharmacol Sci. 2005 ; 98 : 298- 306. https://doi.org/10.1254/jphs.FPJ04058X
  28. Dahlberg L, Billinghurst RC, Manner P, Nelson F, Webb G, Ionescu M et al. Selective enhancement of collagenase-mediated cleavage of resident type II collagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1(matrix metalloproteinase 1). Arthritis Rheum. 2000 ; 43 : 673-82. https://doi.org/10.1002/1529-0131(200003)43:3<673::AID-ANR25>3.0.CO;2-8
  29. Fosang AJ, Last K, Maciewicz RA. Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent. J Clin Invest. 1996 ; 98 : 2292-9. https://doi.org/10.1172/JCI119040
  30. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther. 2003 ; 5 : 94-103.
  31. Dodge GR, Jimenez SA. Glucosamin sulfate modulates the levels of aggrecan and matrix metalloproteinase- 3 synthesized by cultured human osteoarthritis articular chondrocytes. Osteoarthritis and Cartilage. 2003 ; 11 : 424-32. https://doi.org/10.1016/S1063-4584(03)00052-9
  32. Shingleton WD, Ellis AJ, Rowan AD, Cawston TE. Retinoic acid combines with interleukin-1 to promote the degradation of collagen from bovine nasal cartilage: Matrix Metalloproteinase-1 and –13 are involved in cartilage breakdown. J Cellular Biochem. 2000 ; 79 : 519-31. https://doi.org/10.1002/1097-4644(20001215)79:4<519::AID-JCB10>3.0.CO;2-U
  33. Redini F, Mauviel A, Pronost S, Loyau G, Pujol JP. Transforming growth factor $\beta$ exerts opposite effects from interleukin-1$\beta$ on cultured rabbit articular chondrocytes through reduction of interleukin-1 receptor expression. Arthritis Rheum. 1993 ; 36 : 44-50 https://doi.org/10.1002/art.1780360108
  34. Boumediene K, Conrozier T, Mathieu P, Richard M, Marcelli C, Vignon E, Pujol JP. Decrease of cartilage transforming growth factorbeta receptor II expression in the rabbit experimental osteoarthritis potential role in cartilage breakdown. Osteoarthritis Cartilage. 1998 ; 6 : 146-9. https://doi.org/10.1053/joca.1997.0104
  35. van Beuningen HM, van der Kraan PM, Arntz OJ and van den Berg WB. Transforming growth factor-b stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest. 1994 ; 71 : 279.
  36. Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, and van den Berg WB. Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-$\beta$ into murine knee joints. Lab Invest. 1998 ; 78 : 133.
  37. van Beuningen HM, van der Kraan PM, Arntz OJ and van den Berg WB. In vivo protection against interleukin-1-induced articular cartilage damage by transforming growth factor- $\beta$1 : agerelated differences. Ann Rheum Dis. 1994 ; 53 :593. https://doi.org/10.1136/ard.53.9.593
  38. van Beuningen HM, van der Kraan PM, Arntz OJ and van den Berg WB. Protection from interleukin 1 induced destruction of articular cartilage by transforming growth factor : studies in anatomically intact cartilage in vitro and in vivo. Ann Rheum Dis. 1993 ; 52 : 185. https://doi.org/10.1136/ard.52.3.185
  39. Seger R and Krebs EG. The MAPK signaling cascade. FASEBJ. 1995 ; 9 : 726-35.
  40. Waskiewicz AJ and Cooper JA. Evolutionary conservation of Xenopus laevis mitogenactivated protein kinase activation and function. Curr Opin Cell Biol. 1995 ; 7 : 798-805. https://doi.org/10.1016/0955-0674(95)80063-8
  41. Tibbles LA and Woodgett JR. The stressactivated protein kinase pathways. Cell Mol Life Sci. 1999 ; 55 : 1230-54. https://doi.org/10.1007/s000180050369
  42. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000 ; 103 : 239-52. https://doi.org/10.1016/S0092-8674(00)00116-1
  43. Johnson GL and Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002 ; 298 : 1911-2. https://doi.org/10.1126/science.1072682
  44. Werlen G, Hausmann B, Naeher D and Palmer E. Signaling life and death in the thymus : timing is everything. Science. 2003 ; 299 : 1859-63. https://doi.org/10.1126/science.1067833
  45. Fernandes JC, Martel-Pelletier J and Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002 ; 39 : 237-46.
  46. Liacini A, Sylvester J, Li WQ, Zafarullah M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1(AP-1) and nuclear factor kappa B(NF-kappa B) transcription factors downregulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol. 2002 ; 21 : 251-62 https://doi.org/10.1016/S0945-053X(02)00007-0
  47. Jakob M, Demarteau O, Schafer D, Hintermann B, Dick W, Heberer M and Martin I. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem. 2001 ; 81 : 368-77. https://doi.org/10.1002/1097-4644(20010501)81:2<368::AID-JCB1051>3.0.CO;2-J
  48. Mandl EW, Jahr H, Koevoet JL, van Leeuwen JP, Weinans H, Verhaar JA and van Osch GJ. Fibroblast growth factor-2 in serum-free medium is a potent mitogen and reduces dedifferentiation of human ear chondrocytes in monolayer culture. Matrix Biol. 2004 ; 23 : 231-41. https://doi.org/10.1016/j.matbio.2004.06.004
  49. Darling EM and Athanasiou KA. Growth factor impact on articular cartilage subpopulations. Cell Tissue Res. 2005 ; 322 : 463-73. https://doi.org/10.1007/s00441-005-0020-4